DHR bimodules of quasi-local algebras and symmetric quantum cellular automata

被引:0
|
作者
Jones, Corey [1 ]
机构
[1] North Carolina State Univ, Dept Math, 2108 SAS Hall, Raleigh, NC 27695 USA
关键词
quantum cellular automata; tensor categories; WEAK HOPF-ALGEBRAS; OPERATOR-ALGEBRAS; INDUCTIVE LIMITS; CONFORMAL NETS; INDEX THEORY; CLASSIFICATION; OBSERVABLES; SUBFACTORS; CATEGORIES; ANYONS;
D O I
10.4171/QT/216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show that it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a lattice L c Rn satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebras A of operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric QCA to Autbr(DHR(A)), containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical symmetry D, we show that the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center Z(D). We use this to show that, for the double spin-flip action Z/2Z x Z/2Z & Otilde; C2 (R) C2, the group of symmetric QCA modulo symmetric finitedepth circuits in 1D contains a copy of S3; hence, it is non-abelian, in contrast to the case with no symmetry.
引用
收藏
页码:633 / 686
页数:54
相关论文
共 50 条
  • [1] Quasi-local algebras and asymptotic expanders
    Li, Kang
    Nowak, Piotr
    Spakula, Jan
    Zhang, Jiawen
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (02) : 655 - 682
  • [2] Stonean quasi-local Lukasiewicz algebras
    Lacava, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (03): : 759 - 766
  • [3] MARKOV STATES ON QUASI-LOCAL ALGEBRAS
    Fidaleo, Francesco
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, PROCEEDINGS, 2007, 20 : 196 - 204
  • [4] DYNAMIC ENTROPY OF QUASI-LOCAL ALGEBRAS IN QUANTUM STATISTICAL-MECHANICS
    PARK, YM
    SHIN, HH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (01) : 149 - 161
  • [5] Quasi-local energy for spherically symmetric spacetimes
    Wu, Ming-Fan
    Chen, Chiang-Mei
    Liu, Jian-Liang
    Nester, James M.
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (09) : 2401 - 2417
  • [6] Quasi-local energy for spherically symmetric spacetimes
    Ming-Fan Wu
    Chiang-Mei Chen
    Jian-Liang Liu
    James M. Nester
    General Relativity and Gravitation, 2012, 44 : 2401 - 2417
  • [7] Embeddings of von Neumann algebras into uniform Roe algebras and quasi-local algebras
    Baudier, Florent P.
    Braga, Bruno M.
    Farah, Ilijas
    Vignati, Alessandro
    Willett, Rufus
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (01)
  • [8] Strongly quasi-local algebras and their K-theories
    Bao, Hengda
    Chen, Xiaoman
    Zhang, Jiawen
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (01) : 241 - 285
  • [9] VARIATIONAL PRINCIPLE FOR QUASI-LOCAL ALGEBRAS OVER THE LATTICE
    KISHIMOTO, A
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1979, 30 (01): : 51 - 59
  • [10] A quasi-local characterisation of LP-Roe algebras
    Li, Kang
    Wang, Zhijie
    Zhang, Jiawen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (02) : 1213 - 1237