Implementing machine learning tools to predict peptide bioactivity: a case study on bitter peptide prediction

被引:0
|
作者
Di Pizio, Antonella [1 ]
机构
[1] TUM, Leibniz Inst Food Syst Biol, Freising Weihenstephan, Germany
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
L64
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Machine learning study for the prediction of transdermal peptide
    Eunkyoung Jung
    Seung-Hoon Choi
    Nam Kyung Lee
    Sang-Kee Kang
    Yun-Jaie Choi
    Jae-Min Shin
    Kihang Choi
    Dong Hyun Jung
    Journal of Computer-Aided Molecular Design, 2011, 25 : 339 - 347
  • [2] Machine learning study for the prediction of transdermal peptide
    Jung, Eunkyoung
    Choi, Seung-Hoon
    Lee, Nam Kyung
    Kang, Sang-Kee
    Choi, Yun-Jaie
    Shin, Jae-Min
    Choi, Kihang
    Jung, Dong Hyun
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2011, 25 (04) : 339 - 347
  • [3] Application of deep learning imputation to peptide bioactivity and property prediction
    Mahmoud, Samar
    Tandon, Himani
    Segall, Matthew
    Zhang, Ruibo
    Thompson, Robert
    Schubert, Jeffrey
    Kalyani, Dipannita
    Sindhikara, Dan
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [4] Prediction of peptide mass spectral libraries with machine learning
    Cox, Juergen
    NATURE BIOTECHNOLOGY, 2023, 41 (01) : 33 - 43
  • [5] Prediction of peptide mass spectral libraries with machine learning
    Jürgen Cox
    Nature Biotechnology, 2023, 41 : 33 - 43
  • [6] Machine learning tools for peptide bioactivity evaluation - Implications for cell culture media optimization and the broader cultivated meat industry
    Isaac, Kathy Sharon
    Combe, Michelle
    Potter, Greg
    Sokolenko, Stanislav
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 9
  • [7] Machine Learning in Quantitative Protein-peptide Affinity Prediction: Implications for Therapeutic Peptide Design
    Li, Zhongyan
    Miao, Qingqing
    Yan, Fugang
    Meng, Yang
    Zhou, Pcng
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 170 - 176
  • [8] Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning
    Fuchs, Jens-Alexander
    Grisoni, Francesca
    Kossenjans, Michael
    Hiss, Jan A.
    Schneider, Gisbert
    MEDCHEMCOMM, 2018, 9 (09) : 1538 - 1546
  • [9] Can machine learning and combinatorial chemistry coexist? An antimicrobial peptide case study
    Spatola, AF
    Page, CD
    Vogel, DM
    Crozet, Y
    Blondelle, S
    PEPTIDES FOR THE NEW MILLENNIUM, 2000, : 738 - 739
  • [10] Bitter peptide prediction using graph neural networks
    Srivastava, Prashant
    Steuer, Alexandra
    Ferri, Francesco
    Nicoli, Alessandro
    Schultz, Kristian
    Bej, Saptarshi
    Di Pizio, Antonella
    Wolkenhauer, Olaf
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01):