Impact of Plant Growth-Promoting Microorganism (PGPM) Consortium on Biochemical Properties and Yields of Tomato Under Drought Stress

被引:3
|
作者
Krishna, Ram [1 ,2 ]
Ansari, Waquar Akhter [1 ,3 ]
Altaf, Mohammad [4 ]
Jaiswal, Durgesh Kumar [5 ]
Pandey, Sudhakar [1 ]
Singh, Achuit Kumar [1 ]
Kumar, Sudhir [1 ]
Verma, Jay Prakash [2 ]
机构
[1] ICAR Indian Inst Vegetable Res, Varanasi 221305, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India
[3] Marwadi Univ, Res Ctr, Morbi Rd, Rajkot 360003, Gujarat, India
[4] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[5] Graph Era Deemed Univ, Dept Biotechnol, Dehra Dun 248002, Uttarakhand, India
来源
LIFE-BASEL | 2024年 / 14卷 / 10期
关键词
tomato; drought; PGPM; growth attributes; soil physico-biological properties; TRICHODERMA-HARZIANUM; PROCESSING TOMATO; RESPONSES; WATER; RHIZOBACTERIA; TOLERANCE; RICE; L; AGRICULTURE; EXPRESSION;
D O I
10.3390/life14101333
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drought is the most important abiotic stress that restricts the genetically predetermined yield potential of the crops. In the present study, four tomato varieties: Kashi Vishesh, Kashi Aman, Kashi Abhiman, and Kashi Amrit, were used to study the effect of PGPMs (plant growth-promoting microorganisms). PGPM strains, Bacillus megaterium BHUPSB14, Pseudomonas fluorescens BHUPSB06, Pseudomonas aeruginosa BHUPSB01, Pseudomonas putida BHUPSB0, Paenibacillus polymixa BHUPSB17, and Trichoderma horzianum, were used as the consortium. The control group was irrigated up to 80% of field capacity, while 7-, 14-, and 21-day water-deficit-exposed (DWD) plants' pot soil moisture was maintained to 40, 25, and 15% of the field capacity, both with and without the PGPM inoculation condition. The physiological parameters, such as electrolyte leakage, relative water content, photosynthetic efficiency, and chlorophyll color index, were significantly improved by PGPM application under progressive drought stress, compared to the control. PGPM application enhanced the proline accumulation and reduced the formation of hydrogen peroxide and lipid peroxidation under drought stress. The plant growth attributes were significantly increased by PGPM application. The Kashi Amrit variety showed the highest fruit yield among the four varieties under all the treatments. The PGPM consortium application also improved the soil physico-biological properties and nutrient availability in the soil. The PGPM consortium used in this study can potentially mitigate drought stress on tomato in drought-prone regions and act as a biofertilizer. The present study will open a new avenue of drought stress management in tomato.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Influence of Plant Growth-Promoting Rhizobacteria on Corn Growth under Drought Stress
    Lin, Yaru
    Watts, Dexter B.
    Kloepper, Joseph W.
    Feng, Yucheng
    Torbert, H. Allen
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2020, 51 (02) : 250 - 264
  • [2] Kentucky Bluegrass in Response to Plant Growth Promoting Microorganisms (PGPM) Under Drought
    Zhang, Qi
    Rue, Kevin
    HORTSCIENCE, 2022, 57 (09) : S195 - S195
  • [3] Effects of Plant Growth-Promoting Rhizobacteria on the Physioecological Characteristics and Growth of Walnut Seedlings under Drought Stress
    Liu, Fangchun
    Ma, Hailin
    Liu, Binghua
    Du, Zhenyu
    Ma, Bingyao
    Jing, Dawei
    AGRONOMY-BASEL, 2023, 13 (02):
  • [4] Prospecting Plant Growth-Promoting Bacteria Isolated from the Rhizosphere of Sugarcane Under Drought Stress
    Pereira, Leticia B.
    Andrade, Gabriela S.
    Meneghin, Silvana P.
    Vicentini, Renato
    Ottoboni, Laura M. M.
    CURRENT MICROBIOLOGY, 2019, 76 (11) : 1345 - 1354
  • [5] Prospecting Plant Growth-Promoting Bacteria Isolated from the Rhizosphere of Sugarcane Under Drought Stress
    Leticia B. Pereira
    Gabriela S. Andrade
    Silvana P. Meneghin
    Renato Vicentini
    Laura M. M. Ottoboni
    Current Microbiology, 2019, 76 : 1345 - 1354
  • [6] Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses
    Jochum, Michael D.
    McWilliams, Kelsey L.
    Borrego, Eli J.
    Kolomiets, Mike, V
    Niu, Genhua
    Pierson, Elizabeth A.
    Jo, Young-Ki
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [7] Epigenetic and Hormonal Modulation in Plant-Plant Growth-Promoting Microorganism Symbiosis for Drought-Resilient Agriculture
    Kaya, Cengiz
    Ugurlar, Ferhat
    Adamakis, Ioannis-Dimosthenis S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [8] Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress
    Rabiei, Zahra
    Hosseini, Seyyed Jaber
    Pirdashti, Hemmatollah
    Hazrati, Saeid
    HELIYON, 2020, 6 (10)
  • [9] Enhancing tomato growth and soil fertility under salinity stress using halotolerant plant growth-promoting rhizobacteria
    Yan, Ning
    Wang, Weichi
    Mi, Tong
    Zhang, Xuefeng
    Li, Xinyue
    Du, Guodong
    PLANT STRESS, 2024, 14
  • [10] Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains
    Wang, Chun-Juan
    Yang, Wei
    Wang, Chao
    Gu, Chun
    Niu, Dong-Dong
    Liu, Hong-Xia
    Wang, Yun-Peng
    Guo, Jian-Hua
    PLOS ONE, 2012, 7 (12):