Performance of a Deep Learning System and Performance of Optometrists for the Detection of Glaucomatous Optic Neuropathy Using Colour Retinal Photographs

被引:1
|
作者
Jan, Catherine L. [1 ,2 ,3 ]
Vingrys, Algis [1 ,4 ]
Henwood, Jacqueline [1 ]
Shang, Xianwen [1 ,2 ]
Davey, Christian [5 ]
van Wijngaarden, Peter [1 ,2 ]
Kong, George Y. X. [1 ,2 ]
Fan Gaskin, Jennifer C. [1 ,2 ]
Soares Bezerra, Bernardo P. [1 ,2 ]
Stafford, Randall S. [6 ]
He, Mingguang [1 ,2 ,7 ,8 ,9 ]
机构
[1] Royal Victorian Eye & Ear Hosp, Ctr Eye Res Australia, East Melbourne, Vic 3002, Australia
[2] Univ Melbourne, Dept Surg, Ophthalmol, Melbourne, Vic 3010, Australia
[3] Lost Childs Vis Project, Sydney, NSW, Australia
[4] Univ Melbourne, Dept Optometry & Vis Sci, Melbourne, Vic 3053, Australia
[5] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
[6] Stanford Univ, Stanford Prevent Res Ctr, Sch Med, Stanford, CA 94304 USA
[7] Hong Kong Polytech Univ, Sch Optometry, Kowloon, Hong Kong, Peoples R China
[8] Hong Kong Polytech Univ, Res Ctr SHARP Vis RCSV, Hong Kong, Peoples R China
[9] Ctr Eye & Vis Res CEVR, 17W Hong Kong Sci Pk, Hong Kong, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 11期
基金
澳大利亚国家健康与医学研究理事会;
关键词
artificial intelligence; glaucoma detection; primary care; deep learning;
D O I
10.3390/bioengineering11111139
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background/Objectives: Glaucoma is the leading cause of irreversible blindness, with a significant proportion of cases remaining undiagnosed globally. The interpretation of optic disc and retinal nerve fibre layer images poses challenges for optometrists and ophthalmologists, often leading to misdiagnosis. AI has the potential to improve diagnosis. This study aims to validate an AI system (a convolutional neural network based on the Inception-v3 architecture) for detecting glaucomatous optic neuropathy (GON) using colour fundus photographs from a UK population and to compare its performance against Australian optometrists. Methods: A retrospective external validation study was conducted, comparing AI's performance with that of 11 AHPRA-registered optometrists in Australia on colour retinal photographs, evaluated against a reference (gold) standard established by a panel of glaucoma specialists. Statistical analyses were performed using sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). Results: For referable GON, the sensitivity of the AI (33.3% [95%CI: 32.4-34.3) was significantly lower than that of optometrists (65.1% [95%CI: 64.1-66.0]), p < 0.0001, although with significantly higher specificity (AI: 97.4% [95%CI: 97.0-97.7]; optometrists: 85.5% [95%CI: 84.8-86.2], p < 0.0001). The optometrists demonstrated significantly higher AUROC (0.753 [95%CI: 0.744-0.762]) compared to AI (0.654 [95%CI: 0.645-0.662], p < 0.0001). Conclusion: The AI system exhibited lower performance than optometrists in detecting referable glaucoma. Our findings suggest that while AI can serve as a screening tool, both AI and optometrists have suboptimal performance for the nuanced diagnosis of glaucoma using fundus photographs alone. Enhanced training with diverse populations for AI is essential for improving GON detection and addressing the significant challenge of undiagnosed cases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
    Christopher, Mark
    Beighith, Akram
    Bowd, Christopher
    Proudfoot, James A.
    Goldbaum, Michael H.
    Weinreb, Robert N.
    Girkin, Christopher A.
    Liebmann, Jeffrey M.
    Zangwill, Linda M.
    SCIENTIFIC REPORTS, 2018, 8
  • [2] Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
    Mark Christopher
    Akram Belghith
    Christopher Bowd
    James A. Proudfoot
    Michael H. Goldbaum
    Robert N. Weinreb
    Christopher A. Girkin
    Jeffrey M. Liebmann
    Linda M. Zangwill
    Scientific Reports, 8
  • [3] Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs
    Feng Li
    Lei Yan
    Yuguang Wang
    Jianxun Shi
    Hua Chen
    Xuedian Zhang
    Minshan Jiang
    Zhizheng Wu
    Kaiqian Zhou
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258 : 851 - 867
  • [4] Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs
    Li, Feng
    Yan, Lei
    Wang, Yuguang
    Shi, Jianxun
    Chen, Hua
    Zhang, Xuedian
    Jiang, Minshan
    Wu, Zhizheng
    Zhou, Kaiqian
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2020, 258 (04) : 851 - 867
  • [5] Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
    Hood, Donald C.
    De Moraes, Carlos Gustavo
    OPHTHALMOLOGY, 2018, 125 (08) : 1207 - 1208
  • [6] Evaluation of a Deep Learning System For Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
    Al-Aswad, Lama A.
    Kapoor, Rahul
    Chu, Chia Kai
    Walters, Stephen
    Gong, Dan
    Garg, Aakriti
    Gopal, Kalashree
    Patel, Vipul
    Sameer, Trikha
    Rogers, Thomas W.
    Nicolas, Jaccard
    De Moraes, Gustavo C.
    Moazami, Golnaz
    JOURNAL OF GLAUCOMA, 2019, 28 (12) : 1029 - 1034
  • [7] Evaluation of the Pegasus Deep Learning System for identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
    Al-Aswad, Lama
    Kapoor, Rahul
    Chu, Chia Kai
    Walters, Stephen
    Gong, Dan
    Garg, Aakriti
    Gopal, Kalashree
    Patel, Vipul
    Trikha, Sameer
    Rogers, Thomas
    Jaccard, Nicolas
    De Moraes, C. Gustavo
    Moazami, Golnaz
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [8] Considerations When Using a Deep Learning System to Diagnose Glaucomatous Optic Neuropathy
    Sun, Lin
    JAMA OPHTHALMOLOGY, 2020, 138 (04) : 419 - 420
  • [9] Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning
    Medeiros, Felipe A.
    Jammal, Alessandro A.
    Mariottoni, Eduardo B.
    OPHTHALMOLOGY, 2021, 128 (03) : 383 - 392
  • [10] Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs (vol 87, pg 528, 2019)
    Liu, Hanruo
    Li, Liu
    Wormstone, I. Michael
    Qiao, Chunyan
    Zhang, Chun
    Liu, Ping
    Li, Shuning
    Wang, Huaizhou
    Mou, Dapeng
    Pang, Ruiqi
    Yang, Diya
    Zangwill, Linda M.
    Moghimi, Sasan
    Hou, Huiyuan
    Bowd, Christopher
    Jiang, Lai
    Chen, Yihan
    Hu, Man
    Xu, Yongli
    Kang, Hong
    Ji, Xin
    Chang, Robert
    Tham, Clement
    Cheung, Carol
    Ting, Daniel Shu Wei
    Wong, Tien Yin
    Wang, Zulin
    Weinreb, Robert N.
    Xu, Mai
    Wang, Ningli
    JAMA OPHTHALMOLOGY, 2019, 137 (12) : 1468 - 1468