Large-Scale Mapping of Maize Plant Density Using Multi-Temporal Optical and Radar Data: Models, Potential and Application Strategy

被引:0
|
作者
Xiao, Jing [1 ,2 ]
Zhang, Yuan [1 ,2 ]
Du, Xin [1 ,2 ]
Li, Qiangzi [1 ,2 ]
Wang, Hongyan [1 ,2 ]
Wang, Yueting [1 ,2 ]
Xu, Jingyuan [1 ,2 ]
Dong, Yong [1 ,2 ]
Shen, Yunqi [1 ,2 ]
Yan, Sifeng [1 ,2 ]
Gong, Shuguang [1 ,2 ]
Hu, Haoxuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
来源
PLANTS-BASEL | 2025年 / 14卷 / 01期
基金
国家重点研发计划; 美国国家科学基金会;
关键词
maize density estimation; mapping strategy; large-scale; multi-temporal; GROWTH-STAGES; YIELD; REFLECTANCE; COEFFICIENT; STRESS; CORN;
D O I
10.3390/plants14010039
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Accurate crop density estimation is critical for effective agricultural resource management, yet existing methods face challenges due to data acquisition difficulties and low model usability caused by inconsistencies between optical and radar imagery. This study presents a novel approach to maize density estimation by integrating optical and radar data, addressing these challenges with a unique mapping strategy. The strategy combines available data selection, key feature extraction, and optimization to improve accuracy across diverse growth stages. By identifying critical features for maize density and incorporating machine learning to explore optimal feature combinations, we developed a multi-temporal model that enhances estimation accuracy, particularly during leaf development, stem elongation, and tasseling stages (R2 = 0.602, RMSE = 0.094). Our approach improves performance over single-temporal models, and successful maize density maps were generated for the three typical demonstration counties. This work represents an advancement in large-scale crop density estimation, with the potential to expand to other regions and support precision agriculture efforts, offering a foundation for future research on optimizing agricultural resource management.
引用
收藏
页数:25
相关论文
共 40 条
  • [1] Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data
    Anusha, N.
    Bharathi, B.
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2020, 23 (02): : 207 - 219
  • [2] Mapping Large-Scale Forest Disturbance Types with Multi-Temporal CNN Framework
    Chen, Xi
    Zhao, Wenzhi
    Chen, Jiage
    Qu, Yang
    Wu, Dinghui
    Chen, Xuehong
    REMOTE SENSING, 2021, 13 (24)
  • [3] Multi-Temporal SAR Data Large-Scale Crop Mapping Based on U-Net Model
    Wei, Sisi
    Zhang, Hong
    Wang, Chao
    Wang, Yuanyuan
    Xu, Lu
    REMOTE SENSING, 2019, 11 (01)
  • [4] Estimation of crop parameters using multi-temporal optical and radar polarimetric satellite data
    Betbeder, Julie
    Fieuzal, Remy
    Philippets, Yannick
    Ferro-Famil, Laurent
    Baup, Frederic
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [5] Large-scale rice mapping under spatiotemporal heterogeneity using multi-temporal SAR images and explainable deep learning
    Ge, Ji
    Zhang, Hong
    Zuo, Lijun
    Xu, Lu
    Jiang, Jingling
    Song, Mingyang
    Ding, Yinhaibin
    Xie, Yazhe
    Wu, Fan
    Wang, Chao
    Huang, Wenjiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2025, 220 : 395 - 412
  • [6] Large-scale observations of alpine snow and ice cover in Asia: Using multi-temporal VEGETATION sensor data
    Xiao, X
    Moore, B
    Qin, X
    Shen, Z
    Boles, S
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (11) : 2213 - 2228
  • [7] Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Mapping
    Duan, Wei
    Zhang, Hong
    Wang, Chao
    Tang, Yixian
    REMOTE SENSING, 2020, 12 (22) : 1 - 20
  • [8] A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping
    Diniz, Cesar
    Cortinhas, Luiz
    Pinheiro, Maria Luize
    Sadeck, Luis
    Fernandes Filho, Alexandre
    Baumann, Luis R. F.
    Adami, Marcos
    Souza-Filho, Pedro Walfir M.
    REMOTE SENSING, 2021, 13 (08)
  • [9] Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks
    Fieuzal, R.
    Sicre, C. Marais
    Baup, F.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 57 : 14 - 23
  • [10] Regional Crop Characterization Using Multi-Temporal Optical and Synthetic Aperture Radar Earth Observations Data
    Bahrami, Hazhir
    Homayouni, Saeid
    McNairn, Heather
    Hosseini, Mehdi
    Mahdianpari, Masoud
    CANADIAN JOURNAL OF REMOTE SENSING, 2022, 48 (02) : 258 - 277