Diagnostics of Wind Turbine by Detectivity

被引:0
|
作者
Cocconcelli, Marco [1 ]
DElia, Gianluca [1 ]
Strozzi, Matteo [1 ]
Rubini, Riccardo [1 ]
机构
[1] Univ Modena & Reggio Emilia, Reggio Emilia, Italy
关键词
Detectivity; Hjorth's parameters; Wind turbine; Diagnostics;
D O I
10.1007/978-3-031-64569-3_37
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hjorth's parameters were initially proposed in literature, to characterize the morphology of an ECG signal in the field of medicine. They consist of three scalar values that summarize in a compact form time and frequency properties of an input signal. They are the Activity defined as the variance of the time-domain signal, the Mobility related to the variance in the frequency content and the Complexity which is related to the shape of the signal itself. In a previous paper, the authors introduced a new parameter called Detectivity that fuses together the Hjorth ones. Detectivity can be seen as the total gain of the actual Hjorth parameters with respect to a reference condition (i.e. healthy machine). In this paper, Detectivity is used to analyse a wind turbine dataset, publicly available from the LuleaUniversity website, in order to monitor the occurrence of damage in one of the six tested turbines. The challenge is to make the Detectivity robust in the face of a significant change in the instantaneous rotation speed of the turbine. A down-sampling pre-processing allows to filter data corresponding to a limited speed range. The cumulant of the Detectivity value evolves in a different trend for the faulted turbine.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 50 条
  • [1] Partial discharge diagnostics in wind turbine insulation
    Danikas, Michael G.
    Karlis, Athanasios
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2011, 12 (06): : 515 - 522
  • [2] Partial discharge diagnostics in wind turbine insulation
    Michael G. Danikas
    Athanasios Karlis
    Journal of Zhejiang University SCIENCE C, 2011, 12 : 515 - 522
  • [3] Review:Partial discharge diagnostics in wind turbine insulation
    Michael G.DANIKAS
    Athanasios KARLIS
    Frontiers of Information Technology & Electronic Engineering, 2011, (06) : 515 - 522
  • [4] Review:Partial discharge diagnostics in wind turbine insulation
    Michael GDANIKAS
    Athanasios KARLIS
    JournalofZhejiangUniversity-ScienceC(Computers&Electronics), 2011, 12 (06) : 515 - 522
  • [5] Wind Turbine Bearing Diagnostics Based on Vibration Monitoring
    Kadhim, H. T.
    Mahmood, F. H.
    Resen, A. K.
    IBN AL-HAITHAM FIRST INTERNATIONAL SCIENTIFIC CONFERENCE, 2018, 1003
  • [6] Using Domain Knowledge Features for Wind Turbine Diagnostics
    Hu, R. Lily
    Leahy, Kevin
    Konstantakopoulos, Ioannis C.
    Auslander, David M.
    Spanos, Costas J.
    Agogino, Alice M.
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 300 - 305
  • [7] INVERSE DATA TRANSFORMATION FOR CHANGE DETECTION IN WIND TURBINE DIAGNOSTICS
    Yan, Yanjun
    Osadciw, Lisa Ann
    Benson, Glen
    White, Eric
    2009 IEEE 22ND CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1 AND 2, 2009, : 1 - +
  • [8] Statistical Data Processing for Wind Turbine Generator Bearing Diagnostics
    Zimroz, Radoslaw
    Bartelmus, Walter
    Barszcz, Tomasz
    Urbanek, Jacek
    CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2012, : 509 - 518
  • [9] The Analysis of Wind Turbine Construction Safety System that Uses Vibroacoustic Diagnostics
    Szmechta, M.
    ACTA PHYSICA POLONICA A, 2013, 124 (03) : 574 - 577
  • [10] Development of Multivariable Triangulation Method for Diagnostics of Icing of Wind Turbine Blades
    Kabardin, I. K.
    Dvoynishnikov, S. D.
    Gordienko, M. R.
    Kakaulin, S. V.
    Ledovsky, V. E.
    Zuev, V. O.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2022, 31 (04) : 567 - 572