The Cauchy problem associated to the logarithmic Laplacian with an application to the fundamental solution

被引:2
|
作者
Chen, Huyuan [1 ,2 ]
Veron, Laurent [3 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Univ Tours, Inst Denis Poisson, CNRS, UMR 7013, F-37200 Tours, France
关键词
Cauchy problem; Logarithmic Laplacian; Fundamental solution; FRACTIONAL DIFFUSION; OBSTACLE PROBLEM; FREE-BOUNDARY; REGULARITY; EQUATIONS;
D O I
10.1016/j.jfa.2024.110470
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-Delta be the logarithmic Laplacian operator with Fourier symbol 2 In |zeta|, we study the expression of the diffusion kernel which is associated to the equation partial derivative(t)u+L(Delta)u = 0 in (0,N/2)xR(N), u(0, .)=0 in R-N\{0). We apply our results to give a classification of the solutions of {partial derivative(t)u+L(Delta)u = 0 in (0, T) x R-N, u(0, .) = f in R-N and obtain an expression of the fundamental solution of the associated stationary equation in R-N, and of the fundamental solution u in a bounded domain, i.e. L(Delta)u = k delta(0) in the sense of distributions in Omega, such that u = 0 in R-N\Omega. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:72
相关论文
共 50 条
  • [1] Application of the fundamental principle to complex Cauchy problem
    Rigat, S
    ARKIV FOR MATEMATIK, 2000, 38 (02): : 355 - 380
  • [2] FUNDAMENTAL EQUATION OF RADIATION ACOUSTICS AND CAUCHY PROBLEM SOLUTION
    PROKOFEV, VA
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (06): : 1290 - &
  • [3] The Dirichlet problem for the logarithmic Laplacian
    Chen, Huyuan
    Weth, Tobias
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (11) : 1100 - 1139
  • [4] On the Fundamental Solution of the Cauchy Problem for Kolmogorov Systems of the Second Order
    H. P. Malyts’ka
    I. V. Burtnyak
    Ukrainian Mathematical Journal, 2019, 70 : 1275 - 1287
  • [5] STRUCTURE OF A FUNDAMENTAL SOLUTION OF A CAUCHY-PROBLEM FOR MAXWELLS EQUATIONS
    ROMANOV, VG
    DIFFERENTIAL EQUATIONS, 1986, 22 (09) : 1101 - 1109
  • [6] ON THE FUNDAMENTAL SOLUTION OF THE CAUCHY PROBLEM FOR KOLMOGOROV SYSTEMS OF THE SECOND ORDER
    Malyts'ka, H. P.
    Burtnyak, I. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (08) : 1275 - 1287
  • [7] FUNDAMENTAL SOLUTION OF THE CAUCHY-PROBLEM FOR A SCHRODINGER PSEUDODIFFERENTIAL OPERATOR
    MARI, D
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1992, 32 (04): : 689 - 699
  • [8] Radial solution of the Logarithmic Laplacian system
    Zhang, Li-hong
    Nie, Xiao-feng
    Wang, Guo-tao
    Ahmad, Bashir
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (01) : 114 - 124
  • [9] Radial solution of the Logarithmic Laplacian system
    ZHANG Li-hong
    NIE Xiao-feng
    WANG Guo-tao
    Bashir Ahmad
    AppliedMathematics:AJournalofChineseUniversities, 2024, 39 (01) : 114 - 124
  • [10] Radial solution of the Logarithmic Laplacian system
    Li-hong Zhang
    Guo-tao Wang
    Xiao-feng Nie
    Bashir Ahmad
    Applied Mathematics-A Journal of Chinese Universities, 2024, 39 : 114 - 124