Dual-domain based backdoor attack against federated learning

被引:1
|
作者
Li, Guorui [1 ,2 ]
Chang, Runxing [1 ]
Wang, Ying [3 ]
Wang, Cong [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Hebei Key Lab Marine Percept Network & Data Proc, Qinhuangdao 066004, Peoples R China
[3] Qinhuangdao Vocat & Tech Coll, Dept Informat Engn, Qinhuangdao 066100, Peoples R China
关键词
Backdoor attack; Federated learning; Frequency domain; Spatial domain; Trigger;
D O I
10.1016/j.neucom.2025.129424
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The distributed training feature and data heterogeneity in federated learning (FL) render it susceptible to various threats, in which the backdoor attack stands out as the most destructive one. By injecting malicious functionality into the global model through poisoned updates, backdoor attacks can generate attacker-desired inference results on the trigger-embedded inputs while behaving normally on other data instances. The current backdoor triggers are of significant visual features that can be easily identified by humans or computers. Meanwhile, the common model update clipping mechanism is too simple and straightforward to be recognized by various defense methods with ease. Aiming at the above shortcomings, we proposed a dual-domain based backdoor attack (DDBA) against FL in this paper. On the one hand, DDBA generates an imperceptible dual- domain trigger for any image by superimposing in its low-frequency region of the amplitude spectrum and then applying a slight spatial distortion subsequently. On the other hand, DDBA truncates the model update dynamically based on a newly designed adaptive clipping mechanism to enhance its stealthiness. Finally, we carried out extensive experiments to evaluate the attack performance and stealth performance of DDBA on four publicly available datasets. The experiment results show that DDBA has excellent attack performance in both single-shot and multiple-shot attack scenarios as well as robust stealth performance under the existing defense methods against backdoor attacks.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Federated Learning Backdoor Attack Based on Frequency Domain Injection
    Liu, Jiawang
    Peng, Changgen
    Tan, Weijie
    Shi, Chenghui
    ENTROPY, 2024, 26 (02)
  • [2] Defense against backdoor attack in federated learning
    Lu, Shiwei
    Li, Ruihu
    Liu, Wenbin
    Chen, Xuan
    COMPUTERS & SECURITY, 2022, 121
  • [3] Shadow backdoor attack: Multi-intensity backdoor attack against federated learning
    Ren, Qixian
    Zheng, Yu
    Yang, Chao
    Li, Yue
    Ma, Jianfeng
    COMPUTERS & SECURITY, 2024, 139
  • [4] Stealthy Backdoor Attack Against Federated Learning Through Frequency Domain by Backdoor Neuron Constraint and Model Camouflage
    Qiao, Yanqi
    Liu, Dazhuang
    Wang, Rui
    Liang, Kaitai
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2024, 14 (04) : 661 - 672
  • [5] Backdoor Attack Against Split Neural Network-Based Vertical Federated Learning
    He, Ying
    Shen, Zhili
    Hua, Jingyu
    Dong, Qixuan
    Niu, Jiacheng
    Tong, Wei
    Huang, Xu
    Li, Chen
    Zhong, Sheng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 748 - 763
  • [6] Poisoning with Cerberus: Stealthy and Colluded Backdoor Attack against Federated Learning
    Lyu, Xiaoting
    Han, Yufei
    Wang, Wei
    Liu, Jingkai
    Wang, Bin
    Liu, Jiqiang
    Zhang, Xiangliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 9020 - 9028
  • [7] Survey of Backdoor Attack and Defense Algorithms Based on Federated Learning
    Liu, Jialang
    Guo, Yanming
    Lao, Mingrui
    Yu, Tianyuan
    Wu, Yulun
    Feng, Yunhao
    Wu, Jiazhuang
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (10): : 2607 - 2626
  • [8] Sniper Backdoor: Single Client Targeted Backdoor Attack in Federated Learning
    Abad, Gorka
    Paguada, Servio
    Ersoy, Oguzhan
    Picek, Stjepan
    Ramirez-Duran, Victor Julio
    Urbieta, Aitor
    2023 IEEE CONFERENCE ON SECURE AND TRUSTWORTHY MACHINE LEARNING, SATML, 2023, : 377 - 391
  • [9] Backdoor Attack Defense Method for Federated Learning Based on Model Watermarking
    Guo J.-J.
    Liu J.-Z.
    Ma Y.
    Liu Z.-Q.
    Xiong Y.-P.
    Miao K.
    Li J.-X.
    Ma J.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (03): : 662 - 676
  • [10] Federated Learning Backdoor Attack Scheme Based on Generative Adversarial Network
    Chen D.
    Fu A.
    Zhou C.
    Chen Z.
    Fu, Anmin (fuam@njust.edu.cn); Fu, Anmin (fuam@njust.edu.cn), 1600, Science Press (58): : 2364 - 2373