Realistic Trajectory Generation using Simple Probabilistic Language Models

被引:0
|
作者
Mohammed, Hayat Sultan [1 ]
Nascimento, Mario A. [2 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
[2] Northeastern Univ, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
trajectory generation; probabilistic language models;
D O I
10.1145/3681770.3698572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory data, sourced from GPS-enabled devices such as smart vehicles and smartphones, offers valuable insights into human movement patterns across various modes of transportation. However, there is limited availability of such large datasets for testing and benchmarking tools and solutions. Drawing on similarities between trajectories in mobility data and natural language sentences, we explore the application of probabilistic language models to generate arbitrarily large realistic trajectories by treating sequences of GPS points as sequences of tokens, akin to sentences in natural language. Our experiments have shown that, using a small sample of real taxi trajectories, the proposed approach can generate a diverse set of synthetic trajectories that follows closely the distribution of the original sample.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 50 条
  • [1] Effective Trajectory Imputation using Simple Probabilistic Language Models
    Mohammed, Hayat Sultan
    Nascimento, Mario A.
    Barbosa, Denilson
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 51 - 60
  • [2] Revisiting Simple Neural Probabilistic Language Models
    Sun, Simeng
    Iyyer, Mohit
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 5181 - 5188
  • [3] Generation of Synthetic Trajectory Microdata from Language Models
    Blanco-Justicia, Alberto
    Jebreel, Najeeb Moharram
    Manjon, Jesus A.
    Domingo-Ferrer, Josep
    PRIVACY IN STATISTICAL DATABASES, PSD 2022, 2022, 13463 : 172 - 187
  • [4] Trajectory generation using a modified simple shooting method
    Trent, A
    Venkataraman, R
    Doman, D
    2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 2723 - 2729
  • [5] A Probabilistic Approach to Robot Trajectory Generation
    Paraschos, Alexandros
    Neumann, Gerhard
    Peters, Jan
    2013 13TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2013, : 477 - 483
  • [6] Native Language Identification using Probabilistic Graphical Models
    Nicolai, Garrett
    Islam, Md Asadul
    Greiner, Russ
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT), 2013,
  • [7] Optimal Trajectory Generation With Probabilistic System Uncertainty Using Polynomial Chaos
    Fisher, James
    Bhattacharya, Raktim
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (01):
  • [8] Testing probabilistic models of choice using column generation
    Smeulders, Bart
    Davis-Stober, Clintin
    Regenwetter, Michel
    Spieksma, Frits C. R.
    COMPUTERS & OPERATIONS RESEARCH, 2018, 95 : 32 - 43
  • [9] Simultaneous State Estimation of UAV Trajectory Using Probabilistic Graph Models
    Chen, Derek
    Gao, Grace Xingxin
    PROCEEDINGS OF THE 2015 INTERNATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION, 2015, : 804 - 810
  • [10] Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets
    Eschweiler, Dennis
    Yilmaz, Rueveyda
    Baumann, Matisse
    Laube, Ina
    Roy, Rijo
    Jose, Abin
    Brueckner, Daniel
    Stegmaier, Johannes
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)