A Heuristic Strategy Assisted Deep Learning Models for Brain Tumor Classification and Abnormality Segmentation

被引:0
|
作者
Kumar, Veesam Pavan [1 ]
Pattanaik, Satya Ranjan [1 ]
Kumar, V. V. Sunil [2 ]
机构
[1] BPUT, Gandhi Inst Technol, Dept Comp Sci & Engn, Bhubaneswar, India
[2] PBR Visvodaya Inst Technol & Sci, Dept Comp Sci & Engn, Nellore, India
关键词
adaptive dilated dense residual attention network; brain tumor segmentation and classification; improved hermit crab optimizer; multi-scale and dilated TransUnet plus plus; NETWORK; NET;
D O I
10.1111/coin.70018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumors are prevalent forms of malignant neoplasms that, depending on their type, location, and grade, can significantly reduce life expectancy due to their invasive nature and potential for rapid progression. Accordingly, brain tumors classification is an essential step that allows doctors to perform appropriate treatment. Many studies have been done in the sector of medical image processing by employing computational methods to effectively segment and classify tumors. However, the larger amount of information collected by healthcare images prohibits the manual segmentation process in a reasonable time frame, reducing error measures in healthcare settings. Therefore, automated and efficient techniques for segmentation are crucial. In addition, various visual information, noisy images, occlusion, uneven image textures, confused objects, and other features may impact the process. Therefore, the implementation of deep learning provides remarkable results in medicinal image processing, particularly in the segmentation and classification process. However, conventional deep learning-assisted methods struggle with complex structures and dimensional issues. Thus, this paper develops an effective technique for diagnosing brain tumors. The main aspect of the proposed system is to classify the brain tumor types by segmenting the affected regions of the raw images. This novel approach can be applied for various applications like diagnostic centers, decision-making tools, clinical trials, medical research institutes, disease prognosis, and so on. Initially, the requisite images are collected from standard datasets and further, it is subjected to the segmentation period. In this stage, the Multi-scale and Dilated TransUNet++ (MDTUNet++) model is employed to segment the abnormalities. Further, the segmented images are given into an Adaptive Dilated Dense Residual Attention Network (ADDRAN) to classify the brain tumor types. Here, to optimize the ADDRAN technique's parameters, an Improved Hermit Crab Optimizer (IHCO) is supported, which increases the accuracy rates of the overall network. Finally, the numerical examination is conducted to guarantee the robustness and usefulness of the designed model by contrasting it with other related techniques. For Dataset 1, the accuracy value attains 93.71 for the proposed work compared to 87.86 for CNN, 90.18 for DenseNet, and 89.56 and 90.96 for RAN and DRAN, respectively. Thus, supremacy has been achieved for the recommended system while detecting the brain tumor types.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Effectiveness of Deep Learning Models for Brain Tumor Classification and Segmentation
    Irfan, Muhammad
    Shaf, Ahmad
    Ali, Tariq
    Farooq, Umar
    Rahman, Saifur
    Mursal, Salim Nasar Faraj
    Jalalah, Mohammed
    Alqhtani, Samar M.
    AlShorman, Omar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 711 - 729
  • [2] MRI Brain Tumor Segmentation and Classification using different deep learning models
    School Of Computer Science And Engineering, Vellore Institute Of Technology, Chennai, India
    Int. Conf. Adv. Data Eng. Intell. Comput. Syst., ADICS, 2024,
  • [3] Hybrid Deep Learning Approach for Brain Tumor Segmentation and Classification
    Raju, Ayalapogu Ratna
    Pabboju, Suresh
    Rao, Ramisetty Rajeswara
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 503 - 514
  • [4] A Framework for Brain Tumor Segmentation and Classification using Deep Learning Algorithm
    Kulkarni, Sunita M.
    Sundari, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (08) : 374 - 382
  • [5] Deep Learning Based Lightweight Model for Brain Tumor Classification and Segmentation
    Andleeb, Ifrah
    Hussain, B. Zahid
    Ansari, Salik
    Ansari, Mohammad Samar
    Kanwal, Nadia
    Aslam, Asra
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 491 - 503
  • [6] Deep Learning-Assisted Segmentation and Classification of Brain Tumor Types on Magnetic Resonance and Surgical Microscope Images
    Cekic, Efecan
    Pinar, Ertugrul
    Pinar, Merve
    Dagcinar, Adnan
    WORLD NEUROSURGERY, 2024, 182 : E196 - E204
  • [7] Brain tumor segmentation and classification on MRI via deep hybrid representation learning
    Farajzadeh, Nacer
    Sadeghzadeh, Nima
    Hashemzadeh, Mahdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 224
  • [8] A Study of Brain Tumor Segmentation and Classification using Machine and Deep Learning Techniques
    Mandle, Anil Kumar
    Sahu, Satya Prakash
    Gupta, Govind
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [9] Deep Learning for Brain Tumor Classification
    Paul, Justin S.
    Plassard, Andrew J.
    Landman, Bennett A.
    Fabbri, Daniel
    MEDICAL IMAGING 2017: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2017, 10137
  • [10] Detection and classification of brain tumor using hybrid deep learning models
    Baiju Babu Vimala
    Saravanan Srinivasan
    Sandeep Kumar Mathivanan
    Prabhu Mahalakshmi
    Gemmachis Teshite Jayagopal
    Scientific Reports, 13