On the Complexity of Linear Algebra Operations over Algebraic Extension Fields

被引:0
|
作者
Hashemi, Amir [1 ,2 ]
Lichtblau, Daniel [3 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran 193955746, Iran
[3] Wolfram Res, 100 Trade Ctr Dr, Champaign, IL 61820 USA
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2023 | 2023年 / 14139卷
关键词
Gaussian elimination; Minimal polynomial; Polynomial ideals; Grobner bases; FGLM algorithm; Algebraic extension fields; Complexity analysis; GROBNER BASES; POLYNOMIALS;
D O I
10.1007/978-3-031-41724-5_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the complexity of performing some linear algebra operations such as Gaussian elimination and minimal polynomial computation over an algebraic extension field. For this, we use the theory of Grobner bases to employ linear algebra methods as well as to work in an algebraic extension. We show that this has good complexity. Finally, we report an implementation of our algorithms in WOLFRAM MATHEMATICA and illustrate its effectiveness via several examples.
引用
收藏
页码:141 / 161
页数:21
相关论文
共 50 条
  • [1] Randomized Communication Complexity for Linear Algebra Problems over Finite Fields
    Sun, Xiaoming
    Wang, Chengu
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 477 - 488
  • [2] On Linear Complexity of Periodic Sequences over Extension Fields from Cyclic Difference Sets
    Kaida, Takayasu
    Zheng, Junru
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 15 - 18
  • [3] TORSION IN LINEAR ALGEBRAIC GROUPS OVER LARGE ALGEBRAIC FIELDS
    JARDEN, M
    ARCHIV DER MATHEMATIK, 1979, 32 (05) : 445 - 451
  • [4] On linear algebraic groups over pseudoglobal fields
    Andriychuk, Vasyl
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (04): : 11 - 22
  • [5] Expansion complexity and linear complexity of sequences over finite fields
    László Mérai
    Harald Niederreiter
    Arne Winterhof
    Cryptography and Communications, 2017, 9 : 501 - 509
  • [6] Expansion complexity and linear complexity of sequences over finite fields
    Merai, Laszlo
    Niederreiter, Harald
    Winterhof, Arne
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (04): : 501 - 509
  • [7] Computing Minimal Polynomial of Matrices over Algebraic Extension Fields
    Hashemi, Amir
    Alizadeh, Benyamin M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (02): : 217 - 228
  • [8] ON EXTENSION OF FIELD VALUATIONS OVER ALGEBRAIC SKEW-FIELDS
    CHIPCHAKOV, ID
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (04): : 61 - 63
  • [9] PARALLEL COMPLEXITY OF ALGEBRAIC OPERATIONS
    RYSTSOV, IK
    CYBERNETICS, 1988, 24 (05): : 588 - 597
  • [10] New linear codes and algebraic function fields over finite fields
    Xing, Chaoping
    Yeo, Sze Ling
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) : 4822 - 4825