Non-vanishing modulo p of Hecke L-values over imaginary quadratic fields

被引:0
|
作者
Kundu, Debanjana [1 ]
Lei, Antonio [2 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[2] Univ Ottawa, Dept Math & Stat, 150 Louis Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ELLIPTIC-CURVES;
D O I
10.1007/s11856-024-2688-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be two distinct odd primes. Let K be an imaginary quadratic field over which p and q are both split. Let Psi be a Hecke character over K of infinity type (k, j) with 0 <= - j < k. Under certain technical hypotheses, we show that for a Zariski dense set of finite-order characters kappa over K which factor through the Z(q)(2)-extension of K, the p-adic valuation of the algebraic part of the L-value L(kappa Psi<overline>,k+j) is a constant independent of kappa. In addition, when j = 0 and certain technical hypothesis holds, this constant is zero.
引用
收藏
页数:33
相关论文
共 50 条