Adaptive Reliable Defense Graph for Multi-Channel Robust GCN

被引:0
|
作者
Zhang, Xiao [1 ]
Bao, Peng [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Software Engn, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Robustness; Eigenvalues and eigenfunctions; Symmetric matrices; Resists; Message passing; Accuracy; Training; Topology; Perturbation methods; Data models; Graph neural networks; robustness; adversarial attacks; adversarial defense;
D O I
10.1109/TKDE.2025.3538645
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Convolutional Networks (GCNs) have demonstrated remarkable success in various graph-related tasks. However, recent studies show that GCNs are vulnerable to adversarial attacks on graph structures. Therefore, how to defend against such attacks has become a popular research topic. The current common defense methods face two main limitations: (1) From the data perspective, it may lead to suboptimal results since the structural information is ignored when distinguishing the perturbed edges. (2) From the model perspective, the defenders rely on the low-pass filter of the GCN, which is vulnerable during message passing. To overcome these limitations, this paper analyzes the characteristics of perturbed edges, and based on this we propose a robust defense framework, REDE, to generate the adaptive Reliable Defense graph for multi-channel robust GCN. REDE first uses feature similarity and structure difference to discriminate perturbed edges and generates the defense graph by pruning them. Then REDE designs a multi-channel GCN, which can separately capture the information of different edges and high-order neighbors utilizing different frequency components. Leveraging this capability, the defense graph is adaptively updated at each layer, enhancing its reliability and improving prediction accuracy. Extensive experiments on four benchmark datasets demonstrate the enhanced performance and robustness of our proposed REDE over the state-of-the-art defense methods.
引用
收藏
页码:2226 / 2238
页数:13
相关论文
共 50 条
  • [1] AM-GCN: Adaptive Multi-channel Graph Convolutional Networks
    Wang, Xiao
    Zhu, Meiqi
    Bo, Deyu
    Cui, Peng
    Shi, Chuan
    Pei, Jian
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1243 - 1253
  • [2] Adaptive multi-channel Bayesian Graph Neural Network
    Yang, Dong
    Liu, Zhaowei
    Wang, Yingjie
    Xu, Jindong
    Yan, Weiqing
    Li, Ranran
    NEUROCOMPUTING, 2024, 575
  • [3] Adaptive Multi-Channel Deep Graph Neural Networks
    Wang, Renbiao
    Li, Fengtai
    Liu, Shuwei
    Li, Weihao
    Chen, Shizhan
    Feng, Bin
    Jin, Di
    SYMMETRY-BASEL, 2024, 16 (04):
  • [4] MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder
    Pan, Jiacheng
    Lin, Haocai
    Dong, Yihong
    Wang, Yu
    Ji, Yunxin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [5] DAMGNN: Deep adaptive multi-channel graph neural networks
    Li, Yuqiang
    Chen, Wei
    Liao, Jing
    Liu, Chun
    INTELLIGENT DATA ANALYSIS, 2022, 26 (04) : 873 - 891
  • [6] Adaptive multi-channel contrastive graph convolutional network with graph and feature fusion
    Zhong, Luying
    Lu, Jielong
    Chen, Zhaoliang
    Song, Na
    Wang, Shiping
    INFORMATION SCIENCES, 2024, 658
  • [7] Robust adaptive algorithm for multi-channel active noise control
    Jiang, F
    Bunya, M
    Ohmori, H
    Sano, A
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 861 - 866
  • [8] CNIM-GCN: Consensus Neighbor Interaction-based Multi-channel Graph Convolutional Networks
    Zhu, Xiaofei
    Li, Chenghong
    Guo, Jiafeng
    Dietze, Stefan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 226
  • [9] Adaptive Multi-Channel Offset Assignment for Reliable IEEE 802.15.4 TSCH Networks
    Kotsiou, Vasileios
    Papadopoulos, Georgios Z.
    Chatzimisios, Periklis
    Theoleyre, Fabrice
    2018 GLOBAL INFORMATION INFRASTRUCTURE AND NETWORKING SYMPOSIUM (GIIS), 2018,
  • [10] Multi-Channel Graph Neural Networks
    Zhou, Kaixiong
    Song, Qingquan
    Huang, Xiao
    Zha, Daochen
    Zou, Na
    Hu, Xia
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1352 - 1358