Hydrogen peroxide transport by aquaporins: insights from molecular modeling and simulations

被引:0
|
作者
Chevriau, Jonathan [1 ]
De Palma, Gerardo Zerbetto [1 ,2 ]
Alleva, Karina [1 ,2 ]
Zeida, Ari [3 ,4 ]
机构
[1] Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn CONICET, Inst Quim & Fisicoquim Biol IQUIFIB, Junin 956, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Farm & Bioquim, Dept Fisicomatemat, Buenos Aires, Argentina
[3] Univ Republica, Dept Bioquim, Avda Gral Flores 2125, Montevideo, Uruguay
[4] Univ Republica, Fac Med, Ctr Invest Biomed CEINBIO, Avda Gral Flores 2125, Montevideo, Uruguay
关键词
Hydrogen peroxide; Aquaporins; Peroxiporins; Membrane transport mechanisms; Redox signaling; WATER CHANNELS; STRUCTURAL DETERMINANTS; MEMBRANE-TRANSPORT; SIGNALING MOLECULE; MECHANISM; SELECTIVITY; PERMEATION; FAMILY; PERMEABILITY; DYNAMICS;
D O I
10.1007/s12551-025-01288-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Hydrogen peroxide (H2O2) is a key reactive oxygen species involved in cellular redox signaling and oxidative stress. Due to its polar nature, its transport across membranes is regulated by aquaporins (AQPs), membrane channels traditionally known for H2O transport. Certain AQPs, known as peroxiporins, facilitate selective H2O2 permeation, playing critical roles in mantaining redox homeostasis. This review summarizes insights from molecular dynamics (MD) simulations into the mechanisms of H2O2 transport through AQPs. Key structural regions, such as the selectivity filter (SF) and NPA motif, influence H2O2 permeation, with energy profiles revealing differences from H2O transport. While molecular mimicry suggests similarities in the movement of H2O and H2O2, specific interactions and energetic barriers highlight the complexity of the process. We highlight the need for integrating computational and experimental findings for further studies to unify mechanistic understanding and develop applications in redox biology.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Water transport in aquaporins: molecular dynamics simulations
    Ikeguchi, Mitsunori
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2009, 14 : 1283 - 1291
  • [2] Hydrogen-methane transport in clay nanopores: Insights from molecular dynamics simulations
    Wang, Shan
    Pan, Songqi
    Tang, Yongbing
    Mu, Ying
    Gao, Yuncong
    Wang, Ke
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1450 - 1459
  • [3] Lens aquaporins function as peroxiporins to facilitate membrane transport of hydrogen peroxide
    Varadaraj, Kulandaiappan
    Kumari, S. Sindhu
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 524 (04) : 1025 - 1029
  • [4] Mechanism for Cocaine Blocking the Transport of Dopamine: Insights from Molecular Modeling and Dynamics Simulations
    Huang, Xiaoqin
    Gu, Howard H.
    Zhan, Chang-Guo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (45): : 15057 - 15066
  • [5] Molecular Modeling of Aquaporins from Leishmania major
    Neumann, Lucas S. M.
    Dias, Artur H. S.
    Skaf, Munir S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (28): : 5825 - 5836
  • [6] Structural determinants of the hydrogen peroxide permeability of aquaporins
    Almasalmeh, Abdulnasser
    Krenc, Dawid
    Wu, Binghua
    Beitz, Eric
    FEBS JOURNAL, 2014, 281 (03) : 647 - 656
  • [7] Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations
    Hashido, Masanori
    Kidera, Akinori
    Ikeguchi, Mitsunori
    BIOPHYSICAL JOURNAL, 2007, 93 (02) : 373 - 385
  • [8] Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins
    Cordeiro, Rodrigo M.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (09): : 1786 - 1794
  • [9] Selectivity and transport in aquaporins from molecular simulation studies
    Padhi, Siladitya
    Priyakumar, U. Deva
    AQUAPORIN REGULATION, 2020, 112 : 47 - 70
  • [10] Transport in protein Crystals, part I - Insights from molecular simulations
    Malek, Kourosh
    COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (05) : 90 - 95