YNU-HPCC at SemEval-2023 Task7: Multi-evidence Natural Language Inference for Clinical Trial Data based on a BioBERT Model

被引:0
|
作者
Feng, Chao [1 ]
Wang, Jin [1 ]
Zhang, Xuejie [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the system for the YNU-HPCC team in subtask 1 of the SemEval2023 Task 7: Multi-evidence Natural Language Inference for Clinical Trial Data (NLI4CT). This task requires judging the textual entailment relationship between the given CTR and the statement annotated by the expert annotator. This system is based on the fine-tuned Bi-directional Encoder Representation from Transformers for Biomedical Text Mining (BioBERT) model with supervised contrastive learning and back translation. Supervised contrastive learning is to enhance the classification, and back translation is to enhance the training data. Our system achieved relatively good results on the competition's official leaderboard. The code of this paper is available at https://github.com/facanhe/SemEval-2023Task7.
引用
收藏
页码:664 / 670
页数:7
相关论文
共 22 条
  • [1] SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data
    Jullien, Mael
    Valentino, Marco
    Frost, Hannah
    O'Regan, Paul
    Landers, Donal
    Freitas, Andre
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 2216 - 2226
  • [2] FII SMART at SemEval 2023 Task7: Multi-evidence Natural Language Inference for Clinical Trial Data
    Volosincu, Mihai B.
    Lupu, Cosmin
    Gifu, Daniela
    Trandabat, Diana
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 212 - 220
  • [3] CPIC at SemEval-2023 Task 7: GPT2-based Model for Multi-evidence Natural Language Inference for Clinical Trial Data
    Huang, Mingtong
    Ren, Junxiang
    Liu, Lang
    Song, Ruilin
    Yin, Wenbo
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 397 - 401
  • [4] YNU-HPCC at SemEval-2023 Task 9: Pretrained Language Model for Multilingual Tweet Intimacy Analysis
    Cai, Qisheng
    Wang, Jin
    Zhang, Xuejie
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 733 - 738
  • [5] NCUEE-NLP at SemEval-2023 Task 7: Ensemble Biomedical LinkBERT Transformers in Multi-evidence Natural Language Inference for Clinical Trial Data
    Chen, Chao-Yi
    Tien, Kao-Yuan
    Cheng, Yuan-Hao
    Lee, Lung-Hao
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 776 - 781
  • [6] Saama AI Research at SemEval-2023 Task 7: Exploring the Capabilities of Flan-T5 for Multi-evidence Natural Language Inference in Clinical Trial Data
    Kanakarajan, Kamal Raj
    Sankarasubbu, Malaikannan
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 995 - 1003
  • [7] YNU-HPCC at SemEval-2023 Task 6: LEGAL-BERT based Hierarchical BiLSTM with CRF for Rhetorical Roles Prediction
    Chen, Yu
    Zhang, You
    Wang, Jin
    Zhang, Xuejie
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 2075 - 2081
  • [8] Clemson NLP at SemEval-2023 Task 7: Applying GatorTron to Multi-Evidence Clinical NLI
    Alameldin, Ahmed
    Williamson, Ashton
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1598 - 1602
  • [9] JUST-KM at SemEval-2023 Task 7: Multi-evidence Natural Language Inference using Role-based Double Roberta-Large
    Alissa, Kefah
    Abdulah, Malak
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 447 - 452
  • [10] Sebis at SemEval-2023 Task 7: A Joint System for Natural Language Inference and Evidence Retrieval from Clinical Trial Reports
    Vladika, Juraj
    Matthes, Florian
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1863 - 1870