FINDING TENSOR DECOMPOSITIONS WITH SPARSE

被引:0
|
作者
Ju, Jeong-hoon [1 ]
Kim, Taehyeong [2 ]
Kim, Yeongrak [1 ,3 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
[2] Kyungpook Natl Univ, Nonlinear Dynam & Math Applicat Ctr, Daegu 41566, South Korea
[3] Pusan Natl Univ, Inst Math Sci, Busan 46241, South Korea
关键词
CP decomposition; tensor rank; LASSO; determinant; IDENTIFICATION; REPRESENTATION; DICTIONARIES; EQUATIONS;
D O I
10.4134/JKMS.j230579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we suggest a new method for a given tensor to find CP decompositions using a less number of rank 1 tensors. The main ingredient is the Least Absolute Shrinkage and Selection Operator (LASSO) by considering the decomposition problem as a sparse optimization problem. As applications, we design experiments to find some CP decompositions of the matrix multiplication and determinant tensors. In particular, we find a new formula for the 4 x 4 determinant tensor as a sum of 12 rank 1 tensors.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 50 条
  • [1] SPARSE REGULARIZATION OF TENSOR DECOMPOSITIONS
    Kim, Hyon-Jung
    Ollila, Esa
    Koivunen, Visa
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3836 - 3840
  • [2] Robust and sparse estimation of tensor decompositions
    Kim, Hyon-Jung
    Lila, Esa
    Koivunen, Visa
    Croux, Christophe
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 965 - 968
  • [3] Finding hidden structure in data with tensor decompositions
    Microsoft Research, New England, United States
    不详
    Lect. Notes Comput. Sci.,
  • [4] Scalable Sparse Tensor Decompositions in Distributed Memory Systems
    Kaya, Oguz
    Ucar, Bora
    PROCEEDINGS OF SC15: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2015,
  • [5] TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
    Johndrow, James E.
    Bhattacharya, Anirban
    Dunson, David B.
    ANNALS OF STATISTICS, 2017, 45 (01): : 1 - 38
  • [6] Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
    Ahmed, Talal
    Raja, Haroon
    Bajwa, Waheed U.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 944 - 966
  • [7] Robust Tensor CUR Decompositions: Rapid Low-Tucker-Rank Tensor Recovery with Sparse Corruptions
    Cai, HanQin
    Chao, Zehan
    Huang, Longxiu
    Needell, Deanna
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01): : 225 - 247
  • [8] Learning Fast Dictionaries for Sparse Representations Using Low-Rank Tensor Decompositions
    Dantas, Cassio F.
    Cohen, Jeremy E.
    Gribonval, Remi
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 456 - 466
  • [9] HERMITIAN TENSOR DECOMPOSITIONS
    Nie, Jiawang
    Yang, Zi
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1115 - 1144
  • [10] Tensor Decompositions and Their Properties
    Peska, Patrik
    Jukl, Marek
    Mikes, Josef
    MATHEMATICS, 2023, 11 (17)