The increase in ambient temperature is responsible for a behavioral, physiological, and metabolic responses known as heat stress, which affects dairy cows' general well-being, health, reproduction, and productivity. Focusing on the functioning of the mammary gland, attention has been recently paid to a new method of cell-cell communication mediated by extracellular vesicles, which with their cargo can affect the target cells' phenotypic traits, behavior, and biological functions. This study investigated whether the small extracellular vesicles (sEV) isolated from milk of heat-stressed Holstein Friesian (H) and Brown Swiss (B) cows affect the cellular response of a bovine mammary epithelial cell line (BME-UV1). To this purpose, 8 mid lactation cows, 4 of each breed fed the same diet and kept in the same barn, which experienced the same hyperthermia during a natural heat wave, were chosen to collect 2 milk different samples: under thermoneutrality (TN, d1) and under heat stress (HS, d 8) conditions. The sEV were isolated from skim milk samples through differential centrifugations, characterized for size and concentration by nanoparticle presence of EV markers through western blotting. Then BME-UV1 cells were incubated for 24 h with different cows. In vitro results of BME-UV 1 cells treated with milk sEV H-HS and B-HS showed an alteration of the cell viability and metabolic activity, by reducing or increasing reactive oxygen species accumulation, and suppressing or increasing the expression of stress-associated genes thereby modulating the response of BME-UV 1 according to the animals' thermal condition and the breed. These findings indicated that the small vesicles of Brown milk triggered cellular defense against heat stress, supporting the Brown Swiss breed's thermotolerance.