The structural basis for high-affinity c-di-GMP binding to the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus

被引:0
|
作者
Neissner, Konstantin [1 ,2 ]
Keller, Heiko [1 ,2 ]
Kirchner, Lennart [3 ]
Duesterhus, Stefanie [1 ]
Duchardt-Ferner, Elke [1 ,2 ]
Averhoff, Beate [3 ]
Woehnert, Jens [1 ,2 ]
机构
[1] Goethe Univ Frankfurt M, Inst Mol Biosci, Frankfurt, Germany
[2] Goethe Univ Frankfurt M, Ctr Biomol Magnet Resonance BMRZ, Frankfurt, Germany
[3] Goethe Univ Frankfurt M, Inst Mol Biosci, Mol Microbiol & Bioenerget, Frankfurt, Germany
关键词
HYDROGEN-BONDS; RESONANCE ASSIGNMENTS; RAPID IDENTIFICATION; CYCLIC DIGUANYLATE; TWITCHING-MOTILITY; DNA TRANSPORT; TRANSFORMATION; DYNAMICS; RECOGNITION; ACTIVATION;
D O I
10.1016/j.jbc.2024.108041
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif. The traffic ATPase PilF from Thermus thermophilus is important for type IV pilus biogenesis, twitching motility, surface attachment, and natural DNA-uptake and contains three consecutive homologous GPSII domains. We show that only two of these domains bind c-di-GMP and define the structural basis for the exceptional high affinity of the GSPII-B domain for c-di-GMP, which is 83-fold higher than that of the prototypical MshEN domain. Our work establishes an extended consensus sequence for the c-di-GMP-binding motif and highlights the role of hydrophobic residues for high-affinity recognition of c-di-GMP. Our structure is the fi rst example for a c-di-GMP-binding domain not relying on arginine residues for ligand recognition. We also show that c-di-GMP-binding induces local unwinding of an a-helical turn as well as subdomain reorientation to reinforce intermolecular contacts between c-diGMP and the C-terminal subdomain. Abolishing c-di-GMP binding to GSPII-B reduces twitching motility and surface attachment but not natural DNA-uptake. Overall, our work contributes to a better characterization of c-di-GMP binding in this class of effector domains, allows the prediction of high- affinity c-di-GMP-binding family members, and advances our understanding of the importance of c-di-GMP binding for T4Prelated functions.
引用
收藏
页数:21
相关论文
共 5 条
  • [1] NMR resonance assignments for the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus in the apo and the c-di-GMP-bound state
    Konstantin Neißner
    Heiko Keller
    Elke Duchardt-Ferner
    Carolin Hacker
    Kerstin Kruse
    Beate Averhoff
    Jens Wöhnert
    Biomolecular NMR Assignments, 2019, 13 : 383 - 390
  • [2] NMR resonance assignments for the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus in the apo and the c-di-GMP-bound state
    Neissner, Konstantin
    Keller, Heiko
    Duchardt-Ferner, Elke
    Hacker, Carolin
    Kruse, Kerstin
    Averhoff, Beate
    Woehnert, Jens
    BIOMOLECULAR NMR ASSIGNMENTS, 2019, 13 (02) : 383 - 390
  • [3] NMR resonance assignments for the GSPII-C domain of the PilF ATPase from Thermus thermophilus in complex with c-di-GMP
    Keller, Heiko
    Kruse, Kerstin
    Averhoff, Beate
    Duchardt-Ferner, Elke
    Woehnert, Jens
    BIOMOLECULAR NMR ASSIGNMENTS, 2019, 13 (02) : 361 - 366
  • [4] NMR resonance assignments for the GSPII-C domain of the PilF ATPase from Thermus thermophilus in complex with c-di-GMP
    Heiko Keller
    Kerstin Kruse
    Beate Averhoff
    Elke Duchardt-Ferner
    Jens Wöhnert
    Biomolecular NMR Assignments, 2019, 13 : 361 - 366
  • [5] NMR Solution Structure of the N-Terminal GSPII Domain from the Thermus Thermophilus Traffic ATPase PilF and Reconstruction of its c-di-GMP Binding Capability
    Neissner, Konstantin
    Frohnapfel, Carolin
    Keller, Heiko
    Duchardt-Ferner, Elke
    Schneider, Vanessa
    Kamjou, Zeinab
    Averhoff, Beate
    Woehnert, Jens
    CHEMBIOCHEM, 2025,