Necessary and Sufficient Conditions for Data-Driven Model Reference Control

被引:0
|
作者
Wang, Jiwei [1 ,2 ]
Baldi, Simone [3 ]
van Waarde, Henk J. [2 ]
机构
[1] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 21118, Peoples R China
[2] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, NL-9747 AG Groningen, Netherlands
[3] Southeast Univ, Sch Math, Nanjing 21118, Peoples R China
关键词
Data models; Linear matrix inequalities; Noise measurement; Symmetric matrices; Stability analysis; Closed loop systems; Vectors; Numerical stability; Convergence; Computer science; Data informativity; data-driven control; model reference control (MRC); quadratic matrix inequalities;
D O I
10.1109/TAC.2024.3490669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of model reference control is to design a controller that regulates the system's behavior so as to match a specified reference model. This article investigates necessary and sufficient conditions for model reference control from a data-driven perspective, when only a set of data generated by the system is utilized to directly accomplish the matching. Noiseless and noisy data settings are both considered. Notably, all methods we propose build on the concept of data informativity and do not rely on persistently exciting data.
引用
收藏
页码:2659 / 2666
页数:8
相关论文
共 50 条
  • [1] Sufficient conditions for data-driven stability of ellipsoidal unfalsified control
    van Helvoort, Jeroen
    de Jager, Bram
    Steinbuch, Maarten
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 453 - 458
  • [2] Data-driven model reference control with asymptotically guaranteed stability
    van Heusden, Klaske
    Karimi, Alireza
    Bonvin, Dominique
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (04) : 331 - 351
  • [3] Reference model selection for a model-matching data-driven control design
    Saeki, Masami
    Yamanari, Naoki
    Wada, Nobutaka
    Satoh, Satoshi
    2013 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2013, : 955 - 960
  • [4] Meta-learning for model-reference data-driven control
    Busetto, Riccardo
    Breschi, Valentina
    Formentin, Simone
    AUTOMATICA, 2025, 172
  • [5] Data-driven model reference control design by prediction error identification
    Campestrini, Luciola
    Eckhard, Diego
    Bazanella, Alexandre Sanfelice
    Gevers, Michel
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (06): : 2628 - 2647
  • [6] Controller identification for data-driven model-reference distributed control
    Steentjes, Tom R., V
    Lazar, Mircea
    Van den Hof, Paul M. J.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2358 - 2363
  • [7] Constant Reference Tracking in Data-driven Control
    Umar, Abdul Aris
    Kim, Jung-Su
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2025, 23 (02) : 611 - 619
  • [8] Model-based and data-driven model-reference control: a comparative analysis
    Formentin, Simone
    van Heusden, Klaske
    Karimi, Alireza
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1410 - 1415
  • [9] Direct data-driven model-reference control with Lyapunov stability guarantees
    Breschi, Valentina
    De Persis, Claudio
    Formentin, Simone
    Tesi, Pietro
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1456 - 1461
  • [10] Robust feasibility in model predictive control: Necessary and sufficient conditions
    Kerrigan, EC
    Maciejowski, JM
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 728 - 733