Nonequilibrium quantum Monte Carlo algorithm for stabilizer Rényi entropy in spin systems

被引:0
|
作者
Liu, Zejun [1 ]
Clark, Bryan K. [1 ]
机构
[1] Univ Illinois, Anthony J Leggett Inst Condensed Matter Theory, Champaign, IL 61801 USA
关键词
D O I
10.1103/PhysRevB.111.085144
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum magic, or nonstabilizerness, provides a crucial characterization of quantum systems, regarding the classical simulability with stabilizer states. In this work, we propose an alternative and efficient algorithm for computing stabilizer R & eacute;nyi entropy, one of the measures for quantum magic, in spin systems with sign-problem free Hamiltonians. This algorithm is based on the quantum Monte Carlo simulation of the path integral of the work between two partition function ensembles and it applies to all spatial dimensions and temperatures. We demonstrate this algorithm on the one- and two-dimensional transverse field Ising model at both finite and zero temperatures and show the quantitative agreements with tensor-network based algorithms. We analyze the computational cost and provide analytical and numerical evidences for it to be polynomial in system size. This work also suggests a unifying framework for calculating various types of entropy quantities including entanglement R & eacute;nyi entropy and entanglement R & eacute;nyi negativity.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Stabilizer Rényi entropy on qudits
    Wang, Yiran
    Li, Yongming
    QUANTUM INFORMATION PROCESSING, 2023, 22 (12)
  • [2] Stabilizer Rényi entropy on qudits
    Yiran Wang
    Yongming Li
    Quantum Information Processing, 22
  • [3] Measuring Rényi entanglement entropy with high efficiency and precision in quantum Monte Carlo simulations
    Jiarui Zhao
    Bin-Bin Chen
    Yan-Cheng Wang
    Zheng Yan
    Meng Cheng
    Zi Yang Meng
    npj Quantum Materials, 7
  • [4] Fast Monte Carlo algorithm for nonequilibrium systems
    Breuer, HP
    Huber, W
    Petruccione, F
    PHYSICAL REVIEW E, 1996, 53 (04): : 4232 - 4235
  • [5] Fast Monte Carlo algorithm for nonequilibrium systems
    Breuer, Heinz-Peter
    Huber, Wolfgang
    Petruccione, Francesco
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (4-B pt B):
  • [6] Entanglement Rényi negativity of interacting fermions from quantum Monte Carlo simulations
    Wang, Fo-Hong
    Xu, Xiao Yan
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [7] Quantum Monte Carlo Study of Entanglement in Quantum Spin Systems
    Tommaso Roscilde
    Paola Verrucchi
    Andrea Fubini
    Stephan Haas
    Valerio Tognetti
    Journal of Low Temperature Physics, 2005, 140 : 293 - 302
  • [8] Quantum Monte Carlo study of entanglement in quantum spin systems
    Roscilde, T
    Verrucchi, P
    Fubini, A
    Haas, S
    Tognetti, V
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 293 - 302
  • [9] Quantum Rényi Entropy with Localization Characteristics
    Han, Qi
    Wang, Shuai
    Gou, Lijie
    Zhang, Rong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (11)
  • [10] MONTE-CARLO SIMULATION FOR QUANTUM SPIN SYSTEMS
    HOMMA, S
    MATSUDA, H
    OGITA, N
    PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (06): : 1245 - 1247