Metrics and geodesics on fuzzy spaces

被引:0
|
作者
Viennot, David [1 ]
机构
[1] Univ Franche Comte, Inst UTINAM, CNRS UMR 6213, Observ Besancon, 41bis Ave Observ,BP1615, Besancon, France
关键词
fuzzy spaces; noncommutative geometry; quantum geometry; quantum gravity; matrix models; quantum information; coherent states; MODEL;
D O I
10.1088/1751-8121/ad7c9d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the fuzzy spaces (as special examples of noncommutative manifolds) with their quasicoherent states in order to find their pertinent metrics. We show that they are naturally endowed with two natural 'quantum metrics' which are associated with quantum fluctuations of 'paths'. The first one provides the length the mean path whereas the second one provides the average length of the fluctuated paths. Onto the classical manifold associated with the quasicoherent state (manifold of the mean values of the coordinate observables in the state minimising their quantum uncertainties) these two metrics provides two minimising geodesic equations. Moreover, fuzzy spaces being not torsion free, we have also two different autoparallel geodesic equations associated with two different adiabatic regimes in the move of a probe onto the fuzzy space. We apply these mathematical results to quantum gravity in BFSS matrix models, and to the quantum information theory of a controlled qubit submitted to noises of a large quantum environment.
引用
收藏
页数:71
相关论文
共 50 条
  • [1] Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics
    Nardi, Giacomo
    Peyre, Gabriel
    Vialard, Francois-Xavier
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (01): : 238 - 274
  • [2] Fuzzy polynucleotide spaces and metrics
    Nieto, Juan J.
    Torres, A.
    Georgiou, D. N.
    Karakasidis, T. E.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (03) : 703 - 725
  • [3] Fuzzy polynucleotide spaces and metrics
    Juan J. Nieto
    A. Torres
    D. N. Georgiou
    T. E. Karakasidis
    Bulletin of Mathematical Biology, 2006, 68 : 703 - 725
  • [4] Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy
    Reboulet, Remi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 59 - 103
  • [5] FUZZY METRICS AND STATISTICAL METRIC SPACES
    KRAMOSIL, I
    MICHALEK, J
    KYBERNETIKA, 1975, 11 (05) : 336 - 344
  • [6] On (α,β)-Metrics with Reversible Geodesics
    Lihong LIU
    Guangzu CHEN
    JournalofMathematicalResearchwithApplications, 2016, 36 (05) : 568 - 574
  • [7] REVERSIBLE GEODESICS FOR (α, β)-METRICS
    Masca, Ioana Monica
    Sabau, Vasile Sorin
    Shimada, Hideo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (08) : 1071 - 1094
  • [8] Some complete metrics on spaces of fuzzy subsets
    Krätschmer, V
    FUZZY SETS AND SYSTEMS, 2002, 130 (03) : 357 - 365
  • [9] Geodesics of Random Riemannian Metrics
    LaGatta, Tom
    Wehr, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 181 - 241
  • [10] Geodesics of Random Riemannian Metrics
    Tom LaGatta
    Jan Wehr
    Communications in Mathematical Physics, 2014, 327 : 181 - 241