PointFaceFormer: local and global attention based transformer for 3D point cloud face recognition

被引:0
|
作者
Gao, Ziqi [1 ,2 ]
Li, Qiufu [1 ,2 ]
Wang, Gui [1 ,2 ,3 ]
Shen, Linlin [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Comp Vis Inst, Shenzhen, Peoples R China
[2] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen, Peoples R China
[3] Univ Nottingham, Dept Comp Sci, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/FG59268.2024.10581966
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing 3D point cloud-based facial recognition struggles to fully leverage both global and local information inherent in the 3D point cloud data. In this paper, we introduce the PointFaceFormer, the first Transformer model designed for 3D point cloud face recognition. It incorporates an attention mechanism based on dot product and cosine functions to construct a similarity Transformer architecture, which effectively extracts both local and global features from the point cloud data. Experimental results demonstrate that PointFaceFormer achieves a recognition accuracy of 89.08% and a verification accuracy of 76.93% on the large-scale facial point cloud dataset Lock3DFace, which is a new state-of-the-art in 3D face recognition. Furthermore, PointFaceFormer exhibits excellent generalization performance on cross-quality datasets. Additionally, we validate the effectiveness of the attention mechanism through ablation experiments, which justify the effectiveness of the proposed modules.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 3D Face Recognition Based on Local/Global Shape Description
    Li, Wenlong
    Yin, Zhouping
    Wu, Jiayong
    Xiong, Youlun
    2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, VOL 1, PROCEEDINGS, 2009, : 417 - +
  • [2] Global Hierarchical Attention for 3D Point Cloud Analysis
    Jia, Dan
    Hermans, Alexander
    Leibe, Bastian
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 262 - 277
  • [3] Local Transformer Network on 3D Point Cloud Semantic Segmentation
    Wang, Zijun
    Wang, Yun
    An, Lifeng
    Liu, Jian
    Liu, Haiyang
    INFORMATION, 2022, 13 (04)
  • [4] Point cloud based deep convolutional neural network for 3D face recognition
    Anagha R. Bhople
    Akhilesh M. Shrivastava
    Surya Prakash
    Multimedia Tools and Applications, 2021, 80 : 30237 - 30259
  • [5] Point cloud based deep convolutional neural network for 3D face recognition
    Bhople, Anagha R.
    Shrivastava, Akhilesh M.
    Prakash, Surya
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30237 - 30259
  • [6] 3D Face Recognition using Point Cloud Kernel Correlation
    Fabry, Thomas
    Vandermeulen, Dirk
    Suetens, Paul
    2008 IEEE SECOND INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2008, : 172 - +
  • [7] Local feature based 3D face recognition
    Lee, Y
    Song, H
    Yang, U
    Shin, H
    Sohn, K
    AUDIO AND VIDEO BASED BIOMETRIC PERSON AUTHENTICATION, PROCEEDINGS, 2005, 3546 : 909 - 918
  • [8] PCMG:3D point cloud human motion generation based on self-attention and transformer
    Ma, Weizhao
    Yin, Mengxiao
    Li, Guiqing
    Yang, Feng
    Chang, Kan
    VISUAL COMPUTER, 2024, 40 (05): : 3765 - 3780
  • [9] PCMG:3D point cloud human motion generation based on self-attention and transformer
    Weizhao Ma
    Mengxiao Yin
    Guiqing Li
    Feng Yang
    Kan Chang
    The Visual Computer, 2024, 40 : 3765 - 3780
  • [10] SAT3D: Slot Attention Transformer for 3D Point Cloud Semantic Segmentation
    Ibrahim, Muhammad
    Akhtar, Naveed
    Anwar, Saeed
    Mian, Ajmal
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5456 - 5466