Continuously varying critical exponents in an exactly solvable long-range cluster XY model

被引:0
|
作者
Yi, Tian-Cheng [1 ]
Ding, Chengxiang [2 ]
Liu, Maoxin [3 ,4 ]
Li, Liangsheng [5 ]
You, Wen-Long [6 ,7 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Hangzhou 310018, Peoples R China
[2] Anhui Univ Technol, Sch Sci & Engn Math & Phys, Maanshan 243002, Anhui, Peoples R China
[3] Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, Inst Nonequilibrium Syst, Beijing 100875, Peoples R China
[5] Natl Key Lab Scattering & Radiat, Beijing 100854, Peoples R China
[6] Nanjing Univ Aeronaut & Astronaut, Coll Phys, Nanjing 211106, Peoples R China
[7] MIIT, Key Lab Aerosp Informat Mat & Phys NUAA, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
DETERMINISTIC GENERATION; ISING-MODEL; STATISTICS; STATE; PHASES;
D O I
10.1103/PhysRevA.111.023307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate a generalized antiferromagnetic cluster XY model in a transverse magnetic field, where longrange interactions decay algebraically with distance. This model can be exactly solvable within a free fermion framework. By analyzing the gap, we explicitly derive the critical exponents nu and z, finding that the relationship nu z = 1 still holds. However, the values of nu and z depend on the decaying exponent alpha, in contrast to those for the quantum long-range antiferromagnetic Ising chain. To optimize scaling behavior, we verify these critical exponents using correlation functions and fidelity susceptibility, achieving excellent data collapse across various system sizes by adjusting fitting parameters. Finally, we compute the entanglement entropy at the critical point to determine the central charge c, and find it also varies with alpha. This study provides insights into the unique effect of long-range cluster interactions on the critical properties of quantum spin systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Continuously varying critical exponents in long-range quantum spin ladders
    Adelhardt, Patrick
    Schmidt, Kai P.
    SCIPOST PHYSICS, 2023, 15 (03):
  • [2] LONG-RANGE ORDER OF AN EXACTLY SOLVABLE MODEL OF A QUANTUM ANTIFERROMAGNET
    CHAMATI, H
    TONCHEV, NS
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 174 (02): : 505 - 512
  • [3] CRITICAL EXPONENTS FOR LONG-RANGE INTERACTIONS
    FISHER, ME
    NICKEL, BG
    MA, S
    PHYSICAL REVIEW LETTERS, 1972, 29 (04) : 917 - &
  • [4] CRITICAL EXPONENTS FOR LONG-RANGE INTERACTIONS
    AIZENMAN, M
    FERNANDEZ, R
    LETTERS IN MATHEMATICAL PHYSICS, 1988, 16 (01) : 39 - 49
  • [5] EXACTLY SOLVABLE LONG-RANGE 3-BODY INTERACTIONS
    KOGA, T
    UJIIE, M
    JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (05): : 2854 - 2858
  • [6] Achieving continuously tunable critical exponents for long-range spin systems simulated with trapped ions
    Yang, Fan
    Jiang, Shao-Jian
    Zhou, Fei
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [7] EXACTLY SOLVABLE SU(M) SPIN CHAIN WITH LONG-RANGE INTERACTIONS
    KIWATA, H
    AKUTSU, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) : 1441 - 1444
  • [8] Continuously varying critical exponents in a sandpile model with internal disorder
    Benyoussef, A
    El Kenz, A
    Khfifi, M
    Loulidi, M
    PHYSICAL REVIEW E, 2002, 66 (04): : 9 - 041302
  • [9] RENORMALIZATION GROUP AND CRITICAL EXPONENTS FOR A GAUSSIAN SPIN MODEL WITH LONG-RANGE INTERACTIONS
    NIEMEIJER, T
    VANLEEUW.JM
    PHYSICS LETTERS A, 1972, A 41 (03) : 211 - +