Prediction of fatigue crack propagation lives based on machine learning and data-driven approach

被引:5
|
作者
Sun, Li [1 ]
Huang, Xiaoping [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
关键词
Machine learning; Data-driven; FCP test; Reduced scale model; FCP life prediction; RESIDUAL-STRESSES; GROWTH; LIFE; BEHAVIOR; DEFECTS; FAILURE; CLOSURE; MODEL; RATIO;
D O I
10.1016/j.joes.2022.06.041
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Numerous influence factors will lead to the inaccurate prediction of fatigue crack propagation (FCP) life of the metal structure based on the existing FCP model, while the prediction method based on machine learning (ML) and data-driven approach can provide a new idea for accurately predicting the FCP life of the metal structure. In response to the inconvenience of the online prediction method and the inaccuracy of the offline prediction method, an improved offline prediction method based on data feedback is presented in this paper. FCP tests of reduced scale models of balcony opening corners in a cruise ship are conducted to obtain experimental data with respect to the a - N curves. The crack length corresponding to the cycle is trained using a support vector regression (SVR) and back propagation neural network (BP NN) algorithms. FCP prediction lives of test specimens are performed according to the online, offline, and improved offline prediction methods. Effects of the number of feedback data, the sequence length (SL) in the input set, and the cycle interval on prediction accuracy are discussed. The generalization ability of the proposed method is validated by comparing the prediction results with the experimental data in the literature. The larger the number of feedback data, the higher the prediction accuracy. The results show that 1/5 and 1/2 feedback data are needed in the SVR and BP NN algorithm with SL is 5, respectively. Furthermore, the SVR algorithm and SL = 5 are recommended for FCP life prediction using the improved offline prediction method.
引用
收藏
页码:592 / 604
页数:13
相关论文
共 50 条
  • [31] Seismic response prediction of a damped structure based on data-driven machine learning methods
    Zhang, Tianyang
    Xu, Weizhi
    Wang, Shuguang
    Du, Dongshen
    Tang, Jun
    ENGINEERING STRUCTURES, 2024, 301
  • [32] A data-driven approach for the prediction of coal seam gas content using machine learning techniques
    Akdas, Satuk Bugra
    Fisne, Abdullah
    APPLIED ENERGY, 2023, 347
  • [33] Data-driven price trends prediction of Ethereum: A hybrid machine learning and signal processing approach
    Atta Mills, Ebenezer Fiifi Emire
    Liao, Yuexin
    Deng, Zihui
    Blockchain: Research and Applications, 2024, 5 (04):
  • [34] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [35] Data-driven approach to very high cycle fatigue life prediction
    Liu, Yu-Ke
    Fan, Jia-Le
    Zhu, Gang
    Zhu, Ming -Liang
    Xuan, Fu -Zhen
    ENGINEERING FRACTURE MECHANICS, 2023, 292
  • [36] Data-driven machine learning approach for predicting dwell fatigue life in two classes of Titanium alloys
    Rahman, Syed Abdur
    Chandraker, Abhinav
    Prakash, Om
    Chauhan, Ankur
    ENGINEERING FRACTURE MECHANICS, 2024, 306
  • [37] Approach to data-driven learning
    Markov, Z.
    International Workshop on Fundamentals of Artificial Intelligence Research, 1991,
  • [38] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140
  • [39] Dirty engineering data-driven inverse prediction machine learning model
    Jin-Woong Lee
    Woon Bae Park
    Byung Do Lee
    Seonghwan Kim
    Nam Hoon Goo
    Kee-Sun Sohn
    Scientific Reports, 10
  • [40] Dirty engineering data-driven inverse prediction machine learning model
    Lee, Jin-Woong
    Park, Woon Bae
    Lee, Byung Do
    Kim, Seonghwan
    Goo, Nam Hoon
    Sohn, Kee-Sun
    SCIENTIFIC REPORTS, 2020, 10 (01)