A Comprehensive Deep-Learning Framework for Fine-Grained Farmland Mapping From High-Resolution Images

被引:0
|
作者
Li, Jiepan [1 ]
Wei, Yipan [2 ]
Wei, Tiangao [2 ]
He, Wei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Data mining; Image segmentation; Remote sensing; Benchmark testing; Accuracy; Vectors; Semantics; Annotations; Production; Dual-branch; farmland extraction; remote sensing (RS); semantic segmentation; SEMANTIC SEGMENTATION; NETWORK; LANDSAT; SCALE; RUSLE; GIS;
D O I
10.1109/TGRS.2024.3515157
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The extraction of large-scale farmland is essential for optimizing agricultural production and advancing sustainable development. To meet the urgent need for efficient farmland extraction and overcome existing technical challenges, we have developed a comprehensive farmland mapping framework that integrates advanced data, methodology, and cartographic techniques. Regarding data, we present the fine-grained farmland dataset (FGFD), which compiles high-quality, meticulously annotated very high-resolution (VHR) satellite images and captures distinct regional characteristics across eastern, southern, western, northern, and central China. Building on the FGFD, we propose the dual-branch boundary-aware network (DBBANet), which employs ResNet-50 as the encoder to extract multilayer encoded features and introduces two parallel decoding branches: a spatial-aware branch and a boundary-aware branch. The dual-branch architecture leverages both unique semantic information relevant to farmland and detailed boundary information, facilitating a more comprehensive and accurate representation of farmland areas. By combining this dataset with our innovative methodology, we further propose a farmland mapping framework designed for large-scale applications. The proposed framework enables the direct generation of high-precision vector maps from VHR images, providing crucial technical support for farmland management, resource assessment, and agricultural planning. Extensive experiments conducted on the FGFD have established benchmarks for 13 segmentation methods, demonstrating the state-of-the-art (SOTA) performance of our approach. In practical large-scale applications, our mapping framework produces high-precision vector maps with clear boundaries, bridging the gap in fine-grained farmland mapping and paving the way for further research and applications in this field. The source code of the proposed DBBANet and FGFD is available at: https://github.com/Henryjiepanli/DBBANet.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fine-grained ship classification based on deep residual learning for high-resolution SAR images
    Dong, Yingbo
    Zhang, Hong
    Wang, Chao
    Wang, Yuanyuan
    REMOTE SENSING LETTERS, 2019, 10 (11) : 1095 - 1104
  • [2] Fine-Grained Ship Detection in High-Resolution Satellite Images With Shape-Aware Feature Learning
    Guo, Bo
    Zhang, Ruixiang
    Guo, Haowen
    Yang, Wen
    Yu, Huai
    Zhang, Peng
    Zou, Tongyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (1914-1926) : 1914 - 1926
  • [3] HIGH-RESOLUTION FINE-GRAINED WETLAND MAPPING BASED ON CLASS-BALANCED DEEP SEMANTIC SEGMENTATION NETWORKS
    Wu, Yingxin
    Liu, Yinhe
    Shi, Sunan
    Zhong, Yanfei
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5336 - 5339
  • [4] Aircraft Detection and Fine-Grained Recognition Based on High-Resolution Remote Sensing Images
    Guan, Qinghe
    Liu, Ying
    Chen, Lei
    Zhao, Shuang
    Li, Guandian
    ELECTRONICS, 2023, 12 (14)
  • [5] Fine-grained crack segmentation for high-resolution images via a multiscale cascaded network
    Chu, Honghu
    Chun, Pang-jo
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (04) : 575 - 594
  • [6] MFBFS:A fine-grained building feature set for high-resolution multispectral remote sensing images
    Wang, Zhenqing
    Zhou, Yi
    Wang, Futao
    Wang, Shixin
    Gao, Guorui
    Zhu, Jinfeng
    Wang, Ping
    Hu, Kailong
    National Remote Sensing Bulletin, 2024, 28 (11) : 2780 - 2791
  • [7] Fine-grained leukocyte classification with deep residual learning for microscopic images
    Qin, Feiwei
    Gao, Nannan
    Peng, Yong
    Wu, Zizhao
    Shen, Shuying
    Grudtsin, Artur
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 : 243 - 252
  • [8] Research on Classification of Fine-Grained Rock Images Based on Deep Learning
    Liang, Yong
    Cui, Qi
    Luo, Xing
    Xie, Zhisong
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [9] Mapping taluses using deep learning and high-resolution satellite images
    Jiang, Decai
    Feng, Min
    Yan, Dezhao
    Wang, Yingzheng
    Xu, Jinhao
    Wang, Ning
    Wang, Jianbang
    Li, Xin
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2025, 18 (01)
  • [10] Enhanced Deep Learning Framework for Fine-Grained Segmentation of Fashion and Apparel
    Usmani, Usman Ahmad
    Happonen, Ari
    Watada, Junzo
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 29 - 44