A Novel AI-driven Hybrid Method for Flicker Estimation in Power Systems

被引:0
|
作者
Enayati, Javad [1 ]
Asef, Pedram [2 ]
Yousefi, Aliakbar [3 ]
Asadpourahmadchali, M. B. [3 ]
Benoit, Alexandre [4 ]
机构
[1] Sander Elekt AG, R&D Dept, Stauseestr, Bottstein, Switzerland
[2] Univ Coll London UCL, Dept Mech Engn, London, England
[3] Mazinoor Ind, R&D Dept, Babol, Iran
[4] Univ Bath, Dept E Elect Engn, Bath, Avon, England
关键词
VOLTAGE; TRANSFORM; ALGORITHM;
D O I
10.1109/SEST61601.2024.10694472
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces a novel hybrid method using a combination of an H-infinity filter and artificial neural network (ANN) to estimate flicker components within power distribution system voltages. The H-infinity filter first extracts the estimated envelope of the applied voltage waveforms, incorporating a new voltage fluctuation model that realistically accounts for both harmonic and flicker components. Furthermore, an ADALINE (adaptive linear neuron) extracts the specific flicker components within the envelope. The hybrid process decouples prediction states, enhancing convergence behavior. Additionally, it showcases robust flicker component tracking even in the presence of power harmonics and noise, offering advantages over traditional signal processing methods. The algorithm's performance in flicker estimation is validated through statistical analysis using Monte Carlo (MC) simulations and real world data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Study of AI-Driven Fashion Recommender Systems
    Shirkhani S.
    Mokayed H.
    Saini R.
    Chai H.Y.
    SN Computer Science, 4 (5)
  • [2] AI-driven photonics: Unleashing the power of AI to disrupt the future of photonics
    Mahmoud, Mohamed G.
    Hares, Amr S.
    Hameed, Mohamed Farhat O.
    El-Azab, M. S.
    Obayya, Salah S. A.
    APL PHOTONICS, 2024, 9 (08)
  • [3] Integrating AI-driven Fault Detection and Protection Technique for Electric Power Components and Systems
    Venkatasubramanian, R.
    Diwakar, G.
    Subhashini, P.
    Kumar, V. Venkata
    Rayudu, K.
    Isaac, J. Samson
    Teja, K. Bhanu
    Rajaram, A.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2024, 14 (02): : 293 - 303
  • [4] Live Power Generation Predictions via AI-Driven Resilient Systems in Smart Microgrids
    Wang, Xueyi
    Li, Shancang
    Iqbal, Muddesar
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3875 - 3884
  • [5] Evaluating recommender systems for AI-driven biomedical informatics
    Cava, William La
    Williams, Heather
    Fu, Weixuan
    Vitale, Steve
    Srivatsan, Durga
    Moore, Jason H.
    BIOINFORMATICS, 2021, 37 (02) : 250 - 256
  • [6] A Knowledge-Model for AI-Driven Tutoring Systems
    Baumgart A.
    Madany Mamlouk A.
    Frontiers in Artificial Intelligence and Applications, 2021, 343 : 1 - 18
  • [7] AI-driven approaches for optimizing power consumption: a comprehensive survey
    Biswas, Parag
    Rashid, Abdur
    Biswas, Angona
    Nasim, Md Abdullah Al
    Chakraborty, Sovon
    Gupta, Kishor Datta
    George, Roy
    Discover Artificial Intelligence, 4 (01):
  • [8] Advanced AI-driven techniques for fault and transient analysis in high-voltage power systems
    Aziz, Abdul
    Yousaf, Muhammad Zain
    Renhai, Feng
    Khan, Wajid
    Siddique, Umar
    Ahmad, Mehran
    Abbas, Muhammad
    Bajaj, Mohit
    Zaitsev, Ievgen
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Evaluation of a Novel AI-Driven Automated Treatment Planning System
    Ray, X.
    Moazzezi, M.
    Bojechko, C.
    Moore, K.
    MEDICAL PHYSICS, 2020, 47 (06) : E769 - E770
  • [10] AI-Driven Stroke Rehabilitation Systems and Assessment: A Systematic Review
    Rahman, Sejuti
    Sarker, Sujan
    Haque, A. K. M. Nadimul
    Uttsha, Monisha Mushtary
    Islam, Md Fokhrul
    Deb, Swakshar
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 192 - 207