Deep BiLSTM Attention Model for Spatial and Temporal Anomaly Detection in Video Surveillance

被引:0
|
作者
Natha, Sarfaraz [1 ,2 ]
Ahmed, Fareed [1 ]
Siraj, Mohammad [3 ]
Lagari, Mehwish [1 ]
Altamimi, Majid [3 ]
Chandio, Asghar Ali [1 ]
机构
[1] Quaid E Awam Univ, Dept Informat Technol, Nawabshah 67450, Pakistan
[2] Sir Syed Univ Engn & Technol, Dept Software Engn, Karachi 75300, Pakistan
[3] King Saud Univ, Coll Engn, Dept Elect Engn, Riyadh 11543, Saudi Arabia
关键词
convolutional neural network; recurrent neural network; BiLSTM; multi-attention layer; anomaly detection;
D O I
10.3390/s25010251
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detection of anomalies in video surveillance plays a key role in ensuring the safety and security of public spaces. The number of surveillance cameras is growing, making it harder to monitor them manually. So, automated systems are needed. This change increases the demand for automated systems that detect abnormal events or anomalies, such as road accidents, fighting, snatching, car fires, and explosions in real-time. These systems improve detection accuracy, minimize human error, and make security operations more efficient. In this study, we proposed the Composite Recurrent Bi-Attention (CRBA) model for detecting anomalies in surveillance videos. The CRBA model combines DenseNet201 for robust spatial feature extraction with BiLSTM networks that capture temporal dependencies across video frames. A multi-attention mechanism was also incorporated to direct the model's focus to critical spatiotemporal regions. This improves the system's ability to distinguish between normal and abnormal behaviors. By integrating these methodologies, the CRBA model improves the detection and classification of anomalies in surveillance videos, effectively addressing both spatial and temporal challenges. Experimental assessments demonstrate that the CRBA model achieves high accuracy on both the University of Central Florida (UCF) and the newly developed Road Anomaly Dataset (RAD). This model enhances detection accuracy while also improving resource efficiency and minimizing response times in critical situations. These advantages make it an invaluable tool for public safety and security operations, where rapid and accurate responses are needed for maintaining safety.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Spatial-temporal graph attention network for video anomaly detection
    Chen, Haoyang
    Mei, Xue
    Ma, Zhiyuan
    Wu, Xinhong
    Wei, Yachuan
    IMAGE AND VISION COMPUTING, 2023, 131
  • [2] Attention-Driven Loss for Anomaly Detection in Video Surveillance
    Zhou, Joey Tianyi
    Zhang, Le
    Fang, Zhiwen
    Du, Jiawei
    Peng, Xi
    Xiao, Yang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) : 4639 - 4647
  • [3] LEARNING TASK-SPECIFIC REPRESENTATION FOR VIDEO ANOMALY DETECTION WITH SPATIAL-TEMPORAL ATTENTION
    Liu, Yang
    Liu, Jing
    Zhu, Xiaoguang
    Wei, Donglai
    Huang, Xiaohong
    Song, Liang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2190 - 2194
  • [4] Weakly supervised video anomaly detection with temporal attention module
    Song, Wonjoon
    Kim, Jonghyun
    Kim, Joongkyu
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 982 - 985
  • [5] Deep anomaly detection through visual attention in surveillance videos
    Nasaruddin Nasaruddin
    Kahlil Muchtar
    Afdhal Afdhal
    Alvin Prayuda Juniarta Dwiyantoro
    Journal of Big Data, 7
  • [6] Deep anomaly detection through visual attention in surveillance videos
    Nasaruddin, Nasaruddin
    Muchtar, Kahlil
    Afdhal, Afdhal
    Dwiyantoro, Alvin Prayuda Juniarta
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [7] Video Surveillance Anomaly Detection: A Review on Deep Learning Benchmarks
    Duja, Kashaf U.
    Khan, Izhar Ahmed
    Alsuhaibani, Mohammed
    IEEE ACCESS, 2024, 12 : 164811 - 164842
  • [8] Exploiting Spatial-temporal Correlations for Video Anomaly Detection
    Zhao, Mengyang
    Liu, Yang
    Liu, Jing
    Zeng, Xinhua
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1727 - 1733
  • [9] Review on Deep Learning Approaches for Anomaly Event Detection in Video Surveillance
    Jebur, Sabah Abdulazeez
    Hussein, Khalid A.
    Hoomod, Haider Kadhim
    Alzubaidi, Laith
    Santamaria, Jose
    ELECTRONICS, 2023, 12 (01)
  • [10] Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey
    Duong, Huu-Thanh
    Le, Viet-Tuan
    Hoang, Vinh Truong
    SENSORS, 2023, 23 (11)