Memristor-Based Long and Short-Term Memory Network Models for Optimal Prediction in IoT

被引:1
|
作者
Sun, Junwei [1 ]
Cao, Yuhan [1 ]
Yue, Yi [1 ]
Wang, Yan [1 ]
Wang, Yanfeng [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou 450002, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Long short term memory; Logic gates; Hardware; Memristors; Internet of Things; Integrated circuit modeling; Neural networks; Computational modeling; Fault diagnosis; Feature extraction; Bearing fault diagnosis; golden jackal optimization (GJO) algorithm; long short-term memory (LSTM) neural network; memristor; PLATFORM; PRIVACY;
D O I
10.1109/JIOT.2024.3484396
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The operational integrity and rotational accuracy of bearings are critical in maintaining the reliability of precision devices within IoT systems. In order to improve the efficiency and accuracy of bearing fault diagnosis, a portable advanced bearing fault diagnosis model for IoT applications is proposed. It leverages a novel long short-term memory (LSTM) neural network architecture augmented with memristor technology for enhanced computational efficiency. In this work, a hardware neural network capable of running LSTM is designed, enabling low-power, fast and parallel computation. The circuit comprises three modules: 1) the weight calculation module; 2) the activation function module; and 3) the output module. The weights of the neural network are optimized and adjusted using the double-population jackal optimization algorithm. This algorithm performs convex lens imaging on the jackal population, applies reverse learning, and divides them into elite and ordinary jackals based on fitness values. It integrates the whale algorithm and cosine algorithm to strengthening the optimization ability of the jackal algorithm. Finally, the model is validated using the dataset from Paderborn University (PU). The results indicate that the accuracy of the model exceeds 96% for all four fault types. The findings underscore the potential of this model in powering the next generation of portable diagnostic tools for consumer electronics within the IoT framework.
引用
收藏
页码:4158 / 4168
页数:11
相关论文
共 50 条
  • [1] Memristor-Based Long and Short-Term Memory Network Models for Optimal Prediction in the IoT
    Sun, Junwei
    Cao, Yuhan
    Yue, Yi
    Wang, Yan
    Wang, Yanfeng
    IEEE Internet of Things Journal, 2024,
  • [2] A memristor-based long short term memory circuit
    Kamilya Smagulova
    Olga Krestinskaya
    Alex Pappachen James
    Analog Integrated Circuits and Signal Processing, 2018, 95 : 467 - 472
  • [3] A memristor-based long short term memory circuit
    Smagulova, Kamilya
    Krestinskaya, Olga
    James, Alex Pappachen
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2018, 95 (03) : 467 - 472
  • [4] Network Security Situation Prediction Based on Long Short-Term Memory Network
    Shang, Li
    Zhao, Wei
    Zhang, Jiaju
    Fu, Qiang
    Zhao, Qian
    Yang, Yang
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [5] Prediction of conotoxin type based on long short-term memory network
    Wang, Feng
    Chang, Shan
    Wei, Dashun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6700 - 6708
  • [6] Prediction of Travel Purpose Based on the Long Short-Term Memory Network
    Zhang, Yan
    Zhao, De
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1029 - 1039
  • [7] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    International Journal of Photoenergy, 2022, 2022
  • [8] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [9] Coexistence of Long-Term Memory and Short-Term Memory in an SiNx-Based Memristor
    Choi, Junhyeok
    Kim, Sungjun
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (11):
  • [10] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    IEEE ACCESS, 2020, 8 : 90969 - 90977