An hp finite element a posteriori analysis of a non-standard eigenvalue problem arising in fluid-solid vibrations on curved domains

被引:0
|
作者
Armentano, Maria Gabriela [1 ]
Padra, Claudio [2 ]
Scheble, Mario [3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ctr At Bariloche, RA-4800 San Carlos De Bariloche, Argentina
[3] Ctr At Bariloche, RA-4800 San Carlos De Bariloche, Argentina
关键词
Fluid structure interaction; Vibration problem; Spectral approximation; Curved finite elements; hp version; A posteriori error estimates;
D O I
10.1016/j.camwa.2025.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and analyze an hp finite element method to solve a non-standard spectral problem in a curved plane domain using curved elements. This problem arises from nuclear engineering: the vibration of elastically mounted tubes immersed in a cavity filled with fluid. The eigenvalue problem is presented in a proper setting and we prove, under appropriate assumptions about the curved domain, the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an efficiency and reliability a posteriori error indicator of the residual type up to higher order terms. We analyze in detail the symmetric case, and we propose and efficient approach which allows us simplify the eigenvalue problem and solve efficiently the case of multiples eigenvalues. Finally, we present an hp adaptive algorithm and some numerical tests which show the performance of the scheme, including evidence of exponential convergence.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 50 条
  • [1] AN hp FINITE ELEMENT METHOD TO SOLVE A FLUID-SOLID VIBRATION PROBLEM
    Padra, Claudio
    Rodriguez, Rodolfo
    Scheble, Mario
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2533 - A2557
  • [2] An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
    Armentano, M. G.
    Padra, C.
    Rodriguez, R.
    Scheble, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) : 178 - 188
  • [3] On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures
    Stammberger, Markus
    Voss, Heinrich
    Electronic Transactions on Numerical Analysis, 2009, 36 : 113 - 125
  • [4] ON AN UNSYMMETRIC EIGENVALUE PROBLEM GOVERNING FREE VIBRATIONS OF FLUID-SOLID STRUCTURES
    Stammberger, Markus
    Voss, Heinrich
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 36 : 113 - 125
  • [5] Finite-element analysis of a static fluid-solid interaction problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Jaillet, Fabrice
    Rodriguez, Rodolfo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 886 - 913
  • [6] Mixed Finite Element Analysis of Eigenvalue Problems on Curved Domains
    Dello Russo, Anahi
    Alonso, Ana E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (01) : 1 - 33
  • [7] Analysis and finite element methods for a fluid-solid interaction problem in one dimension
    Makridakis, C
    Ihlenburg, F
    Babuska, I
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08): : 1119 - 1141
  • [8] A POSTERIORI ERROR ANALYSIS OF A FULLY-MIXED FINITE ELEMENT METHOD FOR A TWO-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Dominguez, Carolina
    Gatica, Gabriel N.
    Meddahi, Salim
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (06) : 606 - 641
  • [9] COUPLED FINITE AND BOUNDARY ELEMENT METHODS FOR FLUID-SOLID INTERACTION EIGENVALUE PROBLEMS
    Kimeswenger, A.
    Steinbach, O.
    Unger, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2400 - 2414
  • [10] An hp finite element adaptive scheme to solve the Poisson problem on curved domains
    Armentano, M. G.
    Padra, C.
    Scheble, M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (02): : 705 - 727