Optimal placement of high-channel visual prostheses in human retinotopic visual cortex

被引:0
|
作者
van Hoof, Rick [1 ]
Lozano, Antonio [2 ]
Wang, Feng [2 ]
Klink, P. Christiaan [2 ,3 ]
Roelfsema, Pieter R. [2 ,4 ,5 ,6 ]
Goebel, Rainer [1 ,7 ]
机构
[1] Maastricht Univ, Dept Cognit Neurosci, Maastricht, Netherlands
[2] Netherlands Inst Neurosci, Dept Vis & Cognit, Amsterdam, Netherlands
[3] Univ Utrecht, Helmholtz Inst, Expt Psychol, Utrecht, Netherlands
[4] Vrije Univ Amsterdam, Dept Integrat Neurophysiol, Amsterdam, Netherlands
[5] Acad Med Ctr, Dept Psychiat, Amsterdam, Netherlands
[6] Sorbonne Univ, Lab Visual Brain Therapy, INSERM, CNRS, Paris, France
[7] Maastricht Univ, Maastricht Brain Imaging Ctr, Maastricht, Netherlands
关键词
neurotechnology; visual neuroprosthetics; intracortical electrodes; electrode placement; phosphene mapping; primary visual cortex; magnetic resonance imaging; HUMAN STRIATE CORTEX; ELECTRICAL-STIMULATION; OBJECT RECOGNITION; VISION; BLIND; FIELD; MAPS; EYE; MICROSTIMULATION; SIZE;
D O I
10.1088/1741-2552/adaeef
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Recent strides in neurotechnology show potential to restore vision in individuals with visual impairments due to early visual pathway damage. As neuroprostheses mature and become available to a larger population, manual placement and evaluation of electrode designs become costly and impractical. An automatic method to simulate and optimize the implantation process of electrode arrays at large-scale is currently lacking. Approach. Here, we present a comprehensive method to automatically optimize electrode placement for visual prostheses, with the objective of matching predefined phosphene distributions. Our approach makes use of retinotopic predictions combined with individual anatomy data to minimize discrepancies between simulated and target phosphene patterns. While demonstrated with a 1000-channel 3D electrode array in V1, our simulation pipeline is versatile, potentially accommodating any electrode design and allowing for design evaluation. Main results. Notably, our results show that individually optimized placements in 362 brain hemispheres outperform average brain solutions, underscoring the significance of anatomical specificity. We further show how virtual implantation of multiple individual brains highlights the challenges of achieving full visual field coverage owing to single electrode constraints, which may be overcome by introducing multiple arrays of electrodes. Including additional surgical considerations, such as intracranial vasculature, in future iterations could refine the optimization process. Significance. Our open-source software streamlines the refinement of surgical procedures and facilitates simulation studies, offering a realistic exploration of electrode configuration possibilities.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Retinotopic Organization of Human Ventral Visual Cortex
    Arcaro, Michael J.
    McMains, Stephanie A.
    Singer, Benjamin D.
    Kastner, Sabine
    JOURNAL OF NEUROSCIENCE, 2009, 29 (34): : 10638 - 10652
  • [2] Retinotopic organization of visual cortex in human infants
    Ellis, Cameron T.
    Yates, Tristan S.
    Skalaban, Lena J.
    Bejjanki, Vikranth R.
    Arcaro, Michael J.
    Turk-Browne, Nicholas B.
    NEURON, 2021, 109 (16) : 2616 - +
  • [3] Automatic volumetric segmentation of human visual retinotopic cortex
    Dumoulin, SO
    Hoge, RD
    Baker, CL
    Hess, RF
    Achtman, RL
    Evans, AC
    NEUROIMAGE, 2003, 18 (03) : 576 - 587
  • [4] Emotional enhancement in retinotopic visual cortex
    de Castro, A. Gomez-Carrillo
    Rothkirch, M.
    Kaul, C.
    Sterzer, P.
    PERCEPTION, 2009, 38 : 82 - 83
  • [5] The Retinotopic Representation of Time in Visual Cortex
    Fortunato, Gianfranco
    Kenel-Pierre, Tatiana
    Murray, Micah
    Bueti, Domenica
    PERCEPTION, 2019, 48 : 147 - 147
  • [6] Effect of visual scotomas on the retinotopic organization of the human visual cortex: A quantitative fMRI study
    Hoffart, L
    Wotawa, N
    Castet, E
    Chavane, F
    Conrath, J
    Ridings, B
    Masson, GS
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46
  • [7] Two retinotopic visual areas in human lateral occipital cortex
    Larsson, Jonas
    Heeger, David J.
    JOURNAL OF NEUROSCIENCE, 2006, 26 (51): : 13128 - 13142
  • [8] Retinotopic distribution of chromatic responses in human primary visual cortex
    Vanni, S.
    Henriksson, L.
    Viikari, M.
    James, A. C.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2006, 24 (06) : 1821 - 1831
  • [9] Abnormal retinotopic representations in human visual cortex revealed by fMRI
    Morland, AB
    Baseler, HA
    Hoffmann, MB
    Sharpe, LT
    Wandell, BA
    ACTA PSYCHOLOGICA, 2001, 107 (1-3) : 229 - 247
  • [10] Maps of visual space in human occipital cortex are retinotopic, not spatiotopic
    Gardner, Justin L.
    Merriam, Elisha P.
    Movshon, J. Anthony
    Heeger, David J.
    JOURNAL OF NEUROSCIENCE, 2008, 28 (15): : 3988 - 3999