ENHANCING ROBUSTNESS OF A SOUND-BASED AI MODEL FOR AUTOMATED SLEEP STAGING: VALIDATING ON UNSEEN OPEN DATASET

被引:0
|
作者
Kim, J. [1 ]
Cha, K. S. [1 ]
Cho, E. [1 ]
Kim, D. [1 ]
Lee, D. [2 ]
Jung, K. -Y. [3 ]
Yoon, I. -Y. [4 ]
Kushida, C. [5 ]
机构
[1] ASLEEP CO LTD, AI Core Unit, Seoul, South Korea
[2] ASLEEP CO LTD, Seoul, South Korea
[3] Seoul Natl Univ Coll Med, Seoul, South Korea
[4] Seoul Natl Univ Bundang Hosp, Psychiat, Seongnam Si, South Korea
[5] Stanford Univ, Redwood City, CA USA
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
引用
收藏
页码:103 / 103
页数:1
相关论文
共 12 条
  • [1] THE UTILIZATION OF CIRCADIAN RHYTHM FEATURES TO IMPROVE SOUND-BASED AI SLEEP STAGING
    Park, S.
    Cho, E.
    Park, H.
    Jung, J.
    Lee, D.
    Kim, D.
    Kim, J. -W.
    Jung, K. -Y.
    SLEEP MEDICINE, 2024, 115 : 151 - 152
  • [2] Sound-based AI sleep staging in shared sleeping environments: Validation of the effects of sleep partner sounds
    Kim, Seunghun
    Kim, Daewoo
    Kim, Jongmok
    Cho, Eunsung
    Kyung, Hankyeol
    Cha, Kwang Su
    Hong, Joonki
    Lee, Dongheon
    Yoon, In-Young
    Kushida, Clete
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [3] Sound-based AI for sleep analysis: Enhanced accuracy in sleep stage, OSA detection, and snore detection
    Kim, Jongmok
    Kim, Daewoo
    Kim, Seunghun
    Cho, Eunsung
    Kyung, Hankyeol
    Hong, Joonki
    Lee, Dongheon
    Yoon, In-Young
    Kushida, Clete
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [4] ENHANCING BOTH SLEEP STAGE CLASSIFICATION AND OBSTRUCTIVE SLEEP APNEA EVENT DETECTION TASKS WITH A UNIFIED SOUND-BASED MULTI-TASK MODEL
    Le, V. L.
    Kim, J.
    Cho, E.
    Lee, D.
    Hong, J.
    Kim, D.
    Lee, M.
    Moon, S. H.
    Kushida, C.
    Kim, J. -W.
    Yoon, I. -Y.
    SLEEP MEDICINE, 2024, 115 : 102 - 103
  • [5] Multimodal Multiclass Machine Learning Model for Automated Sleep Staging Based on Time Series Data
    Satapathy S.K.
    Loganathan D.
    SN Computer Science, 3 (4)
  • [6] SLEEP STAGING USING END-TO-END DEEP LEARNING MODEL BASED ON NOCTURNAL SOUND FOR SMARTPHONES
    Hong, Joonki
    Tran, Hai
    Jeong, Jinhwan
    Jang, Hyeryung
    Yoon, In-Young
    Hong, Jung Kyung
    Kim, Jeong-Whun
    SLEEP, 2022, 45 : A156 - A156
  • [7] EVALUATION OF A SOUND-BASED, DEEP-LEARNING MODEL WITH POLYSOMNOGRAPHY IN A PATIENT WITH OBSTRUCTIVE SLEEP APNEA USING POSITIVE AIRWAY PRESSURE THERAPY
    Lee, Taeyoung
    Cha, Kwang Su
    Kim, Seunghun
    Keum, Moonsik
    Sim, Ahrum
    Kim, Daewoo
    Lee, Dongheon
    Kushida, Clete A.
    Kim, Jeong-Whun
    Cho, Younghoon
    CHEST, 2023, 164 (04) : 6346A - 6347A
  • [8] EVALUATION OF A SOUND-BASED DEEP LEARNING MODEL FOR HOME- BASED OBSTRUCTIVE SLEEP APNEA DETECTION USING LEVEL 2 HOME PSG DATA
    Vu Linh Le
    Hong, Jaden
    Jung, Jinhwan
    Cho, Eunsung
    Keum, Moonsik
    Lee, Dongheon
    Yoon, In-Young
    Kim, Jeong-Whun
    Kushida, Clete A.
    Kim, Daewoo
    CHEST, 2023, 164 (04) : 6291A - 6292A
  • [9] Automated Sleep Staging System Based on Ensemble Learning Model Using Single-Channel EEG Signal
    Satapathy, Santosh Kumar
    Kondaveeti, Hari Kishan
    Malladi, Ravisankar
    MACHINE LEARNING AND BIG DATA ANALYTICS (PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND BIG DATA ANALYTICS (ICMLBDA) 2021), 2022, 256 : 186 - 202
  • [10] Validating knowledge-based volumetric modulated arc therapy plans with a multi-institution model (broad model) using a complete open-loop dataset for prostate cancer
    Ito, Takaaki
    Kubo, Kazuki
    Nakahara, Ryuta
    Fukunaga, Jun-ichi
    Ueda, Yoshihiro
    Kamima, Tatsuya
    Shimizu, Yumiko
    Hirata, Makoto
    Kawamorita, Ryu
    Ishii, Kentaro
    Nakamatsu, Kiyoshi
    Monzen, Hajime
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, : 195 - 205