Computational analysis of a normalized time-fractional Fokker-Planck equation

被引:0
|
作者
Wang, Jian [1 ]
Chen, Keyong [1 ]
Kim, Junseok [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Korea Univ, Dept Math, Seoul 02841, South Korea
关键词
Normalized time-fractional Fokker-Planck; equation; Thomas algorithm; Probability distribution;
D O I
10.1016/j.physa.2025.130500
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a normalized time-fractional Fokker-Planck equation (TFFPE). A finite ence method is used to develop a computational method for solving the equation, system's dynamics are investigated through computational simulations. The proposed demonstrates accuracy and efficiency in approximating analytical solutions. Numerical validate the method's effectiveness and highlight the impact of various fractional the dynamics of the normalized time-fractional Fokker-Planck equation. The numerical emphasize the significant impact of different fractional orders on the temporal evolution the system. Specifically, the computational results demonstrate how varying the order influences the diffusion process, with lower orders exhibiting stronger memory and slower diffusion, while higher orders lead to faster propagation and a transition classical diffusion behavior. This work contributes to the understanding of fractional and provides a robust tool for simulating time-fractional systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A computational technique for solving the time-fractional Fokker-Planck equation
    Roul, Pradip
    Kumari, Trishna
    Rohil, Vikas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9736 - 9752
  • [2] Toward computational algorithm for time-fractional Fokker-Planck models
    Freihet, Asad
    Hasan, Shatha
    Alaroud, Mohammad
    Al-Smadi, Mohammed
    Ahmad, Rokiah Rozita
    Din, Ummul Khair Salma
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (10)
  • [3] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [4] Approximation of an optimal control problem for the time-fractional Fokker-Planck equation
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    arXiv, 2020,
  • [5] APPROXIMATION OF AN OPTIMAL CONTROL PROBLEM FOR THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (04): : 381 - 402
  • [6] WASSERSTEIN GRADIENT FLOW FORMULATION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Manh Hong Duong
    Jin, Bangti
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1949 - 1975
  • [7] Numerical solutions for solving model time-fractional Fokker-Planck equation
    Mahdy, Amr M. S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1120 - 1135
  • [8] NUMERICAL SOLUTION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL FORCING
    Le, Kim Ngan
    McLean, William
    Mustapha, Kassem
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1763 - 1784
  • [9] A new analysis of a numerical method for the time-fractional Fokker-Planck equation with general forcing
    Huang, Can
    Le, Kim Ngan
    Stynes, Martin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) : 1217 - 1240
  • [10] A Mixed FEM for a Time-Fractional Fokker-Planck Model
    Karaa, Samir
    Mustapha, Kassem
    Ahmed, Naveed
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)