Injectable hydrogel with miR-222-engineered extracellular vesicles ameliorates myocardial ischemic reperfusion injury via mechanotransduction

被引:0
|
作者
Wang, Yongtao [1 ,2 ,3 ]
Meng, Danni [1 ,2 ,3 ]
Shi, Xiaohui [1 ,2 ,3 ]
Hou, Yan [1 ,2 ]
Zang, Shihui [1 ,2 ]
Chen, Lei [4 ,5 ]
Spanos, Michail [6 ,7 ]
Li, Guoping [6 ,7 ]
Cretoiu, Dragos [8 ,9 ]
Zhou, Qiulian [1 ,2 ,3 ]
Xiao, Junjie [1 ,2 ,3 ]
机构
[1] Shanghai Univ, Affiliated Nantong Hosp, Inst Geriatr, Peoples Hosp Nantong 6,Ctr Regenerat & Ageing Lab, Nantong 226011, Peoples R China
[2] Shanghai Univ, Sch Life Sci, Nantong 226011, Peoples R China
[3] Shanghai Univ, Inst Cardiovasc Sci, Shanghai Engn Res Ctr Organ Repair, Sch Life Sci,Joint Int Res Lab Biomat & Biotechnol, Shanghai 200444, Peoples R China
[4] Tongji Univ, Tongji Hosp, Sch Med, Dept Spine Surg, Shanghai 200065, Peoples R China
[5] Tongji Univ, Tongji Hosp, Sch Med, Dept Spine Surg, Shanghai 200065, Peoples R China
[6] Massachusetts Gen Hosp, Cardiovasc Div, Boston, MA 02114 USA
[7] Harvard Med Sch, Boston, MA 02114 USA
[8] Carol Davila Univ Med & Pharm, Dept Med Genet, Bucharest 020031, Romania
[9] Alessandrescu Rusescu Natl Inst Mother & Child Hlt, Materno Fetal Assistance Excellence Unit, Bucharest 011062, Romania
基金
中国国家自然科学基金;
关键词
CARDIAC PATCH; HEART; PROTECTS; DELIVERY; CELLS; REGENERATION; HYPERTROPHY; BENEFITS; DAMAGE; RATS;
D O I
10.1016/j.xcrm.2025.101987
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cardiac ischemic reperfusion injury (IRI) significantly exacerbates cardiac dysfunction and heart failure, causing high mortality. Despite the severity of IRI, effective therapeutic strategies remain elusive. Acellular cardiac patches have shown considerable efficacy in delivering therapeutics directly to cardiac tissues. Herein, we develop injectable GelMA (GEL) hydrogels with controlled mechanical properties. Targeting miR-222-engineered extracellular vesicles (TeEVs), tailored with cardiac-ischemia-targeting peptides (CTPs), are developed as ischemic TeEV therapeutics. These TeEVs are encapsulated within mechanical hydrogels to create injectable TeEV-loaded cardiac patches, enabling minimal invasiveness to attenuate IRI. The injectable patches facilitate the precise targeting of TeEVs for the efficient rescue of damaged cells. Persistent delivery of TeEVs into the infarcted region alleviates acute IRI and mitigated remodeling post IRI. This is linked to focal adhesion activation, cytoskeleton force enhancement, and nuclear force-sensing preservation. These findings may pave the way for force-sensing approaches to cardiac therapy using bioengineered therapeutic patches.
引用
收藏
页数:24
相关论文
共 17 条
  • [1] miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury
    Ji-Hye Jung
    Gentaro Ikeda
    Yuko Tada
    Daniel von Bornstädt
    Michelle R. Santoso
    Christine Wahlquist
    Siyeon Rhee
    Young-Jun Jeon
    Anthony C. Yu
    Connor G. O’brien
    Kristy Red-Horse
    Eric A. Appel
    Mark Mercola
    Joseph Woo
    Phillip C. Yang
    Basic Research in Cardiology, 2021, 116
  • [2] miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury
    Jung, Ji-Hye
    Ikeda, Gentaro
    Tada, Yuko
    von Bornstadt, Daniel
    Santoso, Michelle R.
    Wahlquist, Christine
    Rhee, Siyeon
    Jeon, Young-Jun
    Yu, Anthony C.
    O'brien, Connor G.
    Red-Horse, Kristy
    Appel, Eric A.
    Mercola, Mark
    Woo, Joseph
    Yang, Phillip C.
    BASIC RESEARCH IN CARDIOLOGY, 2021, 116 (01)
  • [3] Inhibition of miR-148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/β-catenin signaling pathway
    Yang, Mei
    Kong, De-Yan
    Chen, Jian-Chang
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (10) : 17757 - 17766
  • [4] Physically engineered extracellular vesicles targeted delivering miR-21-5p to promote renoprotection after renal ischemia-reperfusion injury
    Wu, Di
    Ma, Wenjie
    Wang, Liucheng
    Long, Chengcheng
    Chen, Silin
    Liu, Jingyu
    Qian, Yiguan
    Zhao, Jun
    Zhou, Changcheng
    Jia, Ruipeng
    MATERIALS TODAY BIO, 2025, 31
  • [5] MiR-146a engineered extracellular vesicles derived from mesenchymal stromal cells more potently attenuate ischaemia-reperfusion injury in lung transplantation
    Yang, Xiucheng
    Hong, Shanchao
    Yan, Tao
    Liu, Mingzhao
    Liu, Mingyao
    Zhao, Jin
    Yue, Bingqing
    Wu, Di
    Shao, Jingbo
    Huang, Man
    Chen, Jingyu
    CLINICAL AND TRANSLATIONAL MEDICINE, 2025, 15 (04):
  • [6] Gamma-aminobutyric acid enhances miR-21-5p loading into adipose-derived stem cell extracellular vesicles to alleviate myocardial ischemia-reperfusion injury via TXNIP regulation
    Wang, Feng-Dan
    Ding, Yi
    Zhou, Jian-Hong
    Zhou, En
    Zhang, Tian-Tian
    Fan, Yu-Qi
    He, Qing
    Zhang, Zong-Qi
    Mao, Cheng-Yu
    Zhang, Jun-Feng
    Zhou, Jing
    WORLD JOURNAL OF STEM CELLS, 2024, 16 (10):
  • [7] MSC-Derived Extracellular Vesicles Activate Mitophagy to Alleviate Renal Ischemia/Reperfusion Injury via the miR-223-3p/NLRP3 Axis
    Sun, Zejia
    Gao, Zihao
    Wu, Jiyue
    Zheng, Xiang
    Jing, Shizhao
    Wang, Wei
    STEM CELLS INTERNATIONAL, 2022, 2022
  • [8] Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis
    Wu, Nan
    Zhang, Xiaowen
    Bao, Yandong
    Yu, Hang
    Jia, Dalin
    Ma, Chunyan
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2019, 23 (12) : 8420 - 8431
  • [9] Circular RNA DLGAP4 ameliorates cardiomyocyte apoptosis through regulating BCL2 via targeting miR-143 in myocardial ischemia-reperfusion injury
    Wang, Shuang
    Chen, Jingyi
    Yu, Wenqian
    Deng, Fan
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2019, 279 : 147 - 147
  • [10] Extracellular vesicles derived from endothelial progenitor cells modified by Houshiheisan promote angiogenesis and attenuate cerebral ischemic injury via miR-126/PIK3R2
    Zhang, Yawen
    Yang, Qiuyue
    Cheng, Hongfa
    Zhang, Ying
    Xie, Yahui
    Zhang, Qiuxia
    SCIENTIFIC REPORTS, 2024, 14 (01):