A sandwich-structured flexible triboelectric nanogenerator self-charging system for energy harvesting and human motion monitoring

被引:0
|
作者
Chen, Hui [1 ,2 ]
Zu, Guoqing [1 ,2 ]
Wu, Hui [3 ]
Zhao, Yu [1 ,2 ]
Yang, Xijia [1 ,2 ]
机构
[1] Changchun Univ Technol, Key Lab Adv Struct Mat, Minist Educ, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, Sch Mat Sci & Engn, Changchun 130012, Peoples R China
[3] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Self-charging monitoring sensor; Energy harvesting; Flexible wearable electronic devices;
D O I
10.1016/j.jallcom.2025.179623
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The self-powered system based on supercapacitor (SC) and triboelectric nanogenerator (TENG) has emerged as a potential sustainable energy solution and exhibits great promise in the development of portable smart electronic devices. Herein, a novel self-charging system is assembled with Ni1Co2Al@carbon cloth (CC)@silica gel-based TENG (NCA-TENG) and Al-MnO2@CC cathode-based quasi-solid-state supercapacitor (AA-SC) for energy collection, storage, and human movement monitoring. For the NCA-TENG, the silica gel serves as the negative friction layer to form a triboelectric pair with the skin, and the Ni1Co2Al@CC acts as the electrode, which reveals a high output performance possessing an open-circuit voltage of 270 V and a short-circuit current of 18 mu A. For the energy storage unit, the quasi-solid-state supercapacitor is assembled with the Al-doped MnO2@CC cathode and the activated carbon (ACC)@CC anode, demonstrating a capacitance of 314.17 mF/cm2 and good stability of 83 % retention rate after 3000 cycles. Furthermore, relying on the outstanding electrical output, NCA-TENG can successfully charge the energy storage units of AA-SC, indicating its integration of energy harvesting and storage. In addition, the self-powered system demonstrates a high potential in real-time response to human body motions, which can function as a self-charging body movement monitoring sensor. This work manifests the broad application prospects of the self-charging system in wearable technology.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69
  • [2] Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator
    Song, Yu
    Cheng, Xiaoliang
    Chen, Haotian
    Huang, Jiahuan
    Chen, Xuexian
    Han, Mengdi
    Su, Zongming
    Meng, Bo
    Song, Zijian
    Zhang, Haixia
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (37) : 14298 - 14306
  • [3] Portable self-charging power unit with integrated flexible supercapacitor and triboelectric nanogenerator
    Zhu, Zhenfu
    Huang, Yin
    Li, Sirui
    Wang, Liying
    Li, Xuesong
    Yang, Xijia
    Lu, Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 971
  • [4] Flexible piezoelectric nanogenerator as a self-charging piezo-supercapacitor for energy harvesting and storage application
    Das, Tupan
    Tripathy, Sisir
    Kumar, Amod
    Kar, Manoranjan
    NANO ENERGY, 2025, 136
  • [5] A flexible PI/MXene triboelectric nanogenerator for energy harvesting and motion monitoring in table tennis
    Xu, Dazhong
    Ma, Xiaoxin
    Ma, Yong
    AIP ADVANCES, 2025, 15 (01)
  • [6] An Amphiphobic Hydraulic Triboelectric Nanogenerator for a Self-Cleaning and Self-Charging Power System
    Zhang, Qian
    Liang, Qijie
    Liao, Qingliang
    Ma, Mingyuan
    Gao, Fangfang
    Zhao, Xuan
    Song, Yiding
    Song, Lijuan
    Xun, Xiaochen
    Zhang, Yue
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (35)
  • [7] Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
    He, Meng
    Du, Wenwen
    Feng, Yanmin
    Li, Shijie
    Wang, Wei
    Zhang, Xiang
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    NANO ENERGY, 2021, 86
  • [8] Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
    He, Meng
    Du, Wenwen
    Feng, Yanmin
    Li, Shijie
    Wang, Wei
    Zhang, Xiang
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    Nano Energy, 2021, 86
  • [9] Portable Self-Charging Power System via Integration of a Flexible Paper-Based Triboelectric Nanogenerator and Supercapacitor
    Shi, Xingxing
    Chen, Sheng
    Zhang, Huilong
    Jiang, Jingxian
    Ma, Zhenqiang
    Gong, Shaoqin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (22): : 18657 - 18666
  • [10] Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator
    Qin, Chaoran
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2021, 274