Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?

被引:4
|
作者
Li, Zhiqi [1 ,2 ]
Yu, Zhiding [2 ]
Lane, Shiyi [2 ]
Li, Jiahan [1 ]
Kautz, Jan [2 ]
Lu, Tong [1 ]
Alvarez, Jose M. [2 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
[2] NVIDIA, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.01408
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-end autonomous driving recently emerged as a promising research direction to target autonomy from a full-stack perspective. Along this line, many of the latest works follow an open-loop evaluation setting on nuScenes to study the planning behavior. In this paper, we delve deeper into the problem by conducting thorough analyses and demystifying more devils in the details. We initially observed that the nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models incorporating ego status, such as the ego vehicle's velocity. These models tend to rely predominantly on the ego vehicle's status for future path planning. Beyond the limitations of the dataset, we also note that current metrics do not comprehensively assess the planning quality, leading to potentially biased conclusions drawn from existing benchmarks. To address this issue, we introduce a new metric to evaluate whether the predicted trajectories adhere to the road. We further propose a simple baseline able to achieve competitive results without relying on perception annotations. Given the current limitations on the benchmark and metrics, we suggest the community reassess relevant prevailing research and be cautious about whether the continued pursuit of state-of-the-art would yield convincing and universal conclusions. Code and models are available at https://github.com/NVlabs/BEV-Planner.
引用
收藏
页码:14864 / 14873
页数:10
相关论文
共 50 条
  • [1] Multimodal End-to-End Autonomous Driving
    Xiao, Yi
    Codevilla, Felipe
    Gurram, Akhil
    Urfalioglu, Onay
    Lopez, Antonio M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 537 - 547
  • [2] Adversarial Driving: Attacking End-to-End Autonomous Driving
    Wu, Han
    Yunas, Syed
    Rowlands, Sareh
    Ruan, Wenjie
    Wahlstrom, Johan
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [3] GenAD: Generative End-to-End Autonomous Driving
    Zheng, Wenzhao
    Song, Ruiqi
    Guo, Xianda
    Zhan, Chenming
    Chen, Long
    COMPUTER VISION - ECCV 2024, PT LXV, 2025, 15123 : 87 - 104
  • [4] End-to-End Autonomous Driving in CARLA: A Survey
    Al Ozaibi, Youssef
    Hina, Manolo Dulva
    Ramdane-Cherif, Amar
    IEEE ACCESS, 2024, 12 : 146866 - 146900
  • [5] End-to-end Autonomous Driving: Advancements and Challenges
    Chu, Duan-Feng
    Wang, Ru-Kang
    Wang, Jing-Yi
    Hua, Qiao-Zhi
    Lu, Li-Ping
    Wu, Chao-Zhong
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (10): : 209 - 232
  • [6] End-to-End Autonomous Driving: Challenges and Frontiers
    Chen, Li
    Wu, Penghao
    Chitta, Kashyap
    Jaeger, Bernhard
    Geiger, Andreas
    Li, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10164 - 10183
  • [7] End-to-End Urban Autonomous Driving With Safety Constraints
    Hou, Changmeng
    Zhang, Wei
    IEEE ACCESS, 2024, 12 : 132198 - 132209
  • [8] A Review of End-to-End Autonomous Driving in Urban Environments
    Coelho, Daniel
    Oliveira, Miguel
    IEEE ACCESS, 2022, 10 : 75296 - 75311
  • [9] End-to-end Spatiotemporal Attention Model for Autonomous Driving
    Zhao, Ruijie
    Zhang, Yanxin
    Huang, Zhiqing
    Yin, Chenkun
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 2649 - 2653
  • [10] SEECAD: Semantic End-to-End Communication for Autonomous Driving
    Ribouh, Soheyb
    Hadid, Abdenour
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1808 - 1813