Despite advancements in antimicrobial and anti-inflammatory treatments, inflammation and its repercussions continue to pose a considerable challenge in medicine. Acute inflammation may cause life-threatening conditions like septic shock, while chronic inflammation leads to tissue degeneration and impaired function. Lipopolysaccharides (LPS), a well-known pathogenic trigger contributing to several dysfunctions, is a crucial part of the outer membrane of gr-negative bacteria. LPS are wellknown for eliciting acute inflammatory responses by activating a pathogen-associated molecular pattern (PAMP), which stimulates the innate immune system and triggers local or systemic inflammatory responses. LPS also activate numerous intracellular molecules that modulate the expression of a wide range of inflammatory mediators. These mediators subsequently initiate or exacerbate various inflammatory processes. Beyond immune cells, LPS can also activate non-immune cells, leading to inflammatory reactions. These excessive inflammatory responses are often detrimental and typically result in chronic and progressive inflammatory diseases, including neurodegenerative, cardiovascular diseases, and cancer. This review delves into the mechanisms by which the bacterial endotoxin LPS contribute to multiple inflammatory diseases. These insights into LPS signaling pathways could inform the design of new treatment strategies such as TLR4, NLRP3, HMGA1, MAPK, and NF-kB inhibitors. This enables precise targeting of inflammation-related processes in disease management.