Solutions and existence results for difference equations of fermat typeSolutions and existence results for fifference equations of fermat typeN. Sarkar, P. Das

被引:0
|
作者
Nabadwip Sarkar [1 ]
Pradip Das [1 ]
机构
[1] Raiganj University,Department of Mathematics
关键词
Entire solutions; Difference equations; Existence; Finite order; 39B32; 34M05; 30D35;
D O I
10.1007/s12215-025-01217-5
中图分类号
学科分类号
摘要
Our paper focuses on exploring the existence and characteristics of solutions for various complex difference equations of Fermat-type such as f(z)2+α(z)2(eP(z))2f(z+c)2=Q(z)e2β(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f(z)^2 + \alpha (z)^2 (e^{P(z)})^2 f(z+c)^2 = Q(z) e^{2\beta (z)} $$\end{document} and f(z)2+α(z)2(eP(z))2(Δcf(z))2=Q(z)e2β(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f(z)^2 + \alpha (z)^2 (e^{P(z)})^2 (\Delta _c f(z))^2 = Q(z) e^{2\beta (z)} $$\end{document}, where α(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha (z) $$\end{document}, β(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta (z) $$\end{document}, P(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P(z) $$\end{document}, and Q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q(z) $$\end{document} are non-zero polynomials in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {C}} $$\end{document} and c∈C\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c \in {\mathbb {C}} {\setminus } \{0\} $$\end{document}. Our findings represent significant advancements over previous theorems established by Long Jian-ren and Qin Da-zhuan (Appl Math J Chin Univ 39:69-88, 2024), particularly in terms of both the existence and explicit forms of solutions. Moreover, some examples are provided to strengthen our results.
引用
收藏
相关论文
共 50 条
  • [1] ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS
    Chen, Jun-Fan
    Lin, Shu-Qing
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (04) : 983 - 1002
  • [2] The existence and forms of solutions for some Fermat-type differential-difference equations
    Wang, Hua
    Xu, Hong Yan
    Tu, Jin
    AIMS MATHEMATICS, 2020, 5 (01): : 685 - 700
  • [3] Existence of meromorphic solutions of some generalized Fermat functional equations
    Wu, Linlin
    He, Chun
    Lu, Weiran
    Lu, Feng
    AEQUATIONES MATHEMATICAE, 2020, 94 (01) : 59 - 69
  • [4] Existence of Meromorphic Solutions of Fermat-Type Functional Equations
    Junyang ZHANG
    Zhigang HUANG
    Journal of Mathematical Research with Applications, 2024, 44 (05) : 659 - 668
  • [5] Existence of meromorphic solutions of some generalized Fermat functional equations
    Linlin Wu
    Chun He
    Weiran Lü
    Feng Lü
    Aequationes mathematicae, 2020, 94 : 59 - 69
  • [6] The existence of entire solutions of some systems of the Fermat type differential-difference equations
    Jiang, Yeyang
    Liao, Zhihua
    Qiu, Di
    AIMS MATHEMATICS, 2022, 7 (10): : 17685 - 17698
  • [7] THE EXISTENCE AND FORMS OF SOLUTIONS FOR SEVERAL SYSTEMS OF THE FERMAT-TYPE DIFFERENCE-DIFFERENTIAL EQUATIONS
    Xu, Hong-Yan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (03) : 1107 - 1132
  • [8] Existence and structure results on almost periodic solutions of difference equations
    Blot, J
    Pennequin, D
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (03) : 383 - 402
  • [9] Existence and multiplicity results for periodic solutions of nonlinear difference equations
    Bereanu, C.
    Mawhin, J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (07) : 677 - 695
  • [10] Some new existence results for fractional difference equations
    Goodrich, Christopher S.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (1-2) : 145 - 162