Consideration on Defining Field for Efficient Ring-LWE

被引:0
|
作者
Yamada, Rintaro [1 ]
Okumura, Shinya [1 ]
Miyaji, Atsuko [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Osaka, Japan
关键词
Ring-LWE; cyclotomic field; Galois theory; basis transform; integral basis;
D O I
10.1109/AsiaJCIS64263.2024.00015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Ring-LWE problem is defined over number fields. In cryptographic schemes based on the Ring-LWE problem, the time complexity of multiplication on the ring of integers of defining field can be too expensive to ignore. For degrees.. of defining fields, the cost of multiplication is reduced to O(m log m), if the defining polynomial or a suitable basis representation of the ring of integers are found. However, it is difficult in general to find them. Although it is shown that cyclotomic fields and decomposition fields of some cyclotomic fields realize efficient cryptographic schemes in previous research, finding suitable defining fields for Ring-LWE is still important. In this paper, we discuss the conditions under which subfields of cyclotomic fields of arbitrary degrees can be used for the efficient cryptographic schemes based on the Ring-LWE. We derive certain conditions about Galois groups of defining fields and show our experimental results which support our result.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [1] Efficient Software Implementation of Ring-LWE Encryption
    de Clercq, Ruan
    Roy, Sujoy Sinha
    Vercauteren, Frederik
    Verbauwhede, Ingrid
    2015 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2015, : 339 - 344
  • [2] Masking ring-LWE
    Reparaz, Oscar
    Roy, Sujoy Sinha
    de Clercq, Ruan
    Vercauteren, Frederik
    Verbauwhede, Ingrid
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2016, 6 (02) : 139 - 153
  • [3] On the Ring-LWE and Polynomial-LWE Problems
    Rosca, Miruna
    Stehle, Damien
    Wallet, Alexandre
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT I, 2018, 10820 : 146 - 173
  • [4] How (Not) to Instantiate Ring-LWE
    Peikert, Chris
    SECURITY AND CRYPTOGRAPHY FOR NETWORKS, SCN 2016, 2016, 9841 : 411 - 430
  • [5] Ring-LWE in Polynomial Rings
    Ducas, Leo
    Durmus, Alain
    PUBLIC KEY CRYPTOGRAPHY - PKC 2012, 2012, 7293 : 34 - 51
  • [6] A Toolkit for Ring-LWE Cryptography
    Lyubashevsky, Vadim
    Peikert, Chris
    Regev, Oded
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2013, 2013, 7881 : 35 - 54
  • [7] A Masked Ring-LWE Implementation
    Reparaz, Oscar
    Roy, Sujoy Sinha
    Vercauteren, Frederik
    Verbauwhede, Ingrid
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2015, 2015, 9293 : 683 - 702
  • [8] Compact Ring-LWE Cryptoprocessor
    Roy, Sujoy Sinha
    Vercauteren, Frederik
    Mentens, Nele
    Chen, Donald Donglong
    Verbauwhede, Ingrid
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2014, 2014, 8731 : 371 - 391
  • [9] Klepto for Ring-LWE Encryption
    Xiao, Dianyan
    Yu, Yang
    COMPUTER JOURNAL, 2018, 61 (08): : 1228 - 1239
  • [10] Large Modulus Ring-LWE ≥ Module-LWE
    Albrecht, Martin R.
    Deo, Amit
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2017, PT I, 2017, 10624 : 267 - 296