Deep Learning-Based Algorithm for Road Defect Detection

被引:0
|
作者
Li, Shaoxiang [1 ]
Zhang, Dexiang [1 ]
机构
[1] Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Peoples R China
关键词
road defect detection; YOLOv8; GD mechanism; RepViTBlock; Wise-IoU loss function;
D O I
10.3390/s25051287
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the increasing demand for road defect detection, existing deep learning methods have made significant progress in terms of accuracy and speed. However, challenges remain, such as insufficient detection precision for detection precision for road defect recognition and issues of missed or false detections in complex backgrounds. These issues reduce detection reliability and hinder real-world deployment. To address these challenges, this paper proposes an improved YOLOv8-based model, RepGD-YOLOV8W. First, it replaces the C2f module in the GD mechanism with the improved C2f module based on RepViTBlock to construct the Rep-GD module. This improvement not only maintains high detection accuracy but also significantly enhances computational efficiency. Subsequently, the Rep-GD module was used to replace the traditional neck part of the model, thereby improving multi-scale feature fusion, particularly for detecting small targets (e.g., cracks) and large targets (e.g., potholes) in complex backgrounds. Additionally, the introduction of the Wise-IoU loss function further optimized the bounding box regression task, enhancing the model's stability and generalization. Experimental results demonstrate that the improved REPGD-YOLOV8W model achieved a 2.4% increase in mAP50 on the RDD2022 dataset. Compared with other mainstream methods, this model exhibits greater robustness and flexibility in handling road defects of various scales.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep learning-based algorithm for multi defect detection in tunnel lining
    Song J.
    He L.
    Long H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1161 - 1173
  • [2] A deep transfer learning-based algorithm for concrete surface defect detection
    Jin, Zhisheng
    Wang, Lifeng
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [3] Deep learning-based fabric defect detection: A review
    Kahraman, Yavuz
    Durmusoglu, Alptekin
    TEXTILE RESEARCH JOURNAL, 2023, 93 (5-6) : 1485 - 1503
  • [4] PCB defect detection algorithm based on deep learning
    Guo, Haoyu
    Zhao, Huanyu
    Zhao, Yanbo
    Liu, Wei
    Optik, 2024, 315
  • [5] A Deep Learning-Based Approach for Road Surface Damage Detection
    Kulambayev, Bakhytzhan
    Beissenova, Gulbakhram
    Katayev, Nazbek
    Abduraimova, Bayan
    Zhaidakbayeva, Lyazzat
    Sarbassova, Alua
    Akhmetova, Oxana
    Issayev, Sapar
    Suleimenova, Laura
    Kasenov, Syrym
    Shadinova, Kunsulu
    Shyrakbayev, Abay
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3403 - 3418
  • [6] PCB Defect Detection Based on Deep Learning Algorithm
    Chen, I-Chun
    Hwang, Rey-Chue
    Huang, Huang-Chu
    PROCESSES, 2023, 11 (03)
  • [7] A Comprehensive Review of Deep Learning-Based PCB Defect Detection
    Chen, Xing
    Wu, Yonglei
    He, Xingyou
    Ming, Wuyi
    IEEE ACCESS, 2023, 11 : 139017 - 139038
  • [8] Deep Learning-Based Defect Detection for Sustainable Smart Manufacturing
    Park, Sang-Hyun
    Lee, Kang-Hee
    Park, Ji-Su
    Shin, Youn-Soon
    SUSTAINABILITY, 2022, 14 (05)
  • [9] A Deep Learning-based Generic Solder Defect Detection System
    Ye, Shi-Qi
    Xue, Chen-Sheng
    Jian, Cheng-Yuan
    Chen, Yi-Zhen
    Gung, Jia-Jiun
    Lin, Chia-Yu
    2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, : 99 - 100
  • [10] Ensemble learning and deep learning-based defect detection in power generation plants
    Atemkeng, Marcellin
    Osanyindoro, Victor
    Rockefeller, Rockefeller
    Hamlomo, Sisipho
    Mulongo, Jecinta
    Ansah-Narh, Theophilus
    Tchakounte, Franklin
    Fadja, Arnaud Nguembang
    JOURNAL OF INTELLIGENT SYSTEMS, 2024, 33 (01)