Semi-supervised Label Generation for 3D Multi-modal MRI Bone Tumor Segmentation

被引:0
|
作者
Curto-Vilalta, Anna [1 ,2 ]
Schlossmacher, Benjamin [1 ]
Valle, Christina [1 ]
Gersing, Alexandra [3 ]
Neumann, Jan [3 ,4 ]
von Eisenhart-Rothe, Ruediger [1 ]
Rueckert, Daniel [2 ]
Hinterwimmer, Florian [1 ,2 ]
机构
[1] Tech Univ Munich, Dept Orthoped & Sports Orthoped, Klinikum Rechts Isar, Ismaninger Str 22, D-81675 Munich, Germany
[2] Tech Univ Munich, Inst AI & Informat Med, Einsteinstr 25, D-81675 Munich, Germany
[3] Tech Univ Munich, Klinikum Rechts Isar, Musculoskeletal Radiol Sect, Ismaninger Str 22, D-81675 Munich, Germany
[4] KSGR, Kantonsspital Graubunden, Loestr 170, CH-7000 Chur, Switzerland
关键词
Medical image segmentation; Deep learning; Multi-modal imaging; Unsupervised segmentation; Label variability;
D O I
10.1007/s10278-025-01448-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Medical image segmentation is challenging due to the need for expert annotations and the variability of these manually created labels. Previous methods tackling label variability focus on 2D segmentation and single modalities, but reliable 3D multi-modal approaches are necessary for clinical applications such as in oncology. In this paper, we propose a framework for generating reliable and unbiased labels with minimal radiologist input for supervised 3D segmentation, reducing radiologists' efforts and variability in manual labeling. Our framework generates AI-assisted labels through a two-step process involving 3D multi-modal unsupervised segmentation based on feature clustering and semi-supervised refinement. These labels are then compared against traditional expert-generated labels in a downstream task consisting of 3D multi-modal bone tumor segmentation. Two 3D-Unet models are trained, one with manually created expert labels and the other with AI-assisted labels. Following this, a blind evaluation is performed on the segmentations of these two models to assess the reliability of training labels. The framework effectively generated accurate segmentation labels with minimal expert input, achieving state-of-the-art performance. The model trained with AI-assisted labels outperformed the baseline model in 61.67% of blind evaluations, indicating the enhancement of segmentation quality and demonstrating the potential of AI-assisted labeling to reduce radiologists' workload and improve label reliability for 3D multi-modal bone tumor segmentation. The code is available at https://github.com/acurtovilalta/3D_LabelGeneration.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Semi-Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation
    Zhu, Lei
    Yang, Kaiyuan
    Zhang, Meihui
    Chan, Ling Ling
    Ng, Teck Khim
    Ooi, Beng Chin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 394 - 404
  • [2] Semi-supervised multi-modal medical image segmentation with unified translation
    Sun H.
    Wei J.
    Yuan W.
    Li R.
    Computers in Biology and Medicine, 2024, 176
  • [3] SEGMENTATION OF INFLAMED SYNOVIA IN MULTI-MODAL 3D MRI
    Basso, Curzio
    Santoro, Matteo
    Verri, Alessandro
    Esposito, Mario
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 229 - +
  • [4] Learning Dynamic Convolutions for Multi-modal 3D MRI Brain Tumor Segmentation
    Yang, Qiushi
    Yuan, Yixuan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 441 - 451
  • [5] Comprehensive Semi-Supervised Multi-Modal Learning
    Yang, Yang
    Wang, Ke-Tao
    Zhan, De-Chuan
    Xiong, Hui
    Jiang, Yuan
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4092 - 4098
  • [6] Pseudo-Label Calibration Semi-supervised Multi-Modal Entity Alignment
    Wang, Luyao
    Qi, Pengnian
    Bao, Xigang
    Zhou, Chunlai
    Qin, Biao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9116 - 9124
  • [7] VSM: A Versatile Semi-supervised Model for Multi-modal Cell Instance Segmentation
    Cai, Xiaochen
    Cai, Hengxing
    Tu, Weiwei
    Xu, Kele
    Li, Wu-Jun
    COMPETITIONS IN NEURAL INFORMATION PROCESSING SYSTEMS, VOL 212, 2022, 212
  • [8] A multi-modal dental dataset for semi-supervised deep learning image segmentation
    Wang, Yaqi
    Ye, Fan
    Chen, Yifei
    Wang, Chengkai
    Wu, Chengyu
    Xu, Feng
    Ma, Zhean
    Liu, Yi
    Zhang, Yifan
    Cao, Mingguo
    Chen, Xiaodiao
    SCIENTIFIC DATA, 2025, 12 (01)
  • [9] Semi-supervised image clustering with multi-modal information
    Jianqing Liang
    Yahong Han
    Qinghua Hu
    Multimedia Systems, 2016, 22 : 149 - 160
  • [10] Semi-Supervised Multi-Modal Learning with Incomplete Modalities
    Yang, Yang
    Zhan, De-Chuan
    Sheng, Xiang-Rong
    Jiang, Yuan
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2998 - 3004