On invariants of free metabelian bicommutative algebras

被引:0
|
作者
Oguslu, Nazar Sahin [1 ]
Findik, Sehmus [1 ]
机构
[1] Cukurova Univ, Dept Math, Adana, Turkiye
关键词
Bicommutative; Invariants; Metabelian;
D O I
10.1007/s11587-025-00931-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebra is bicommutative if it satisfies left and right symmetries; i.e., a(bc)=b(ac)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(bc)=b(ac)$$\end{document} and (ab)c=(ac)b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(ab)c=(ac)b$$\end{document}. Let K be a field of characteristic zero, and Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document}, n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, be the free metabelian bicommutative algebra generated by a set Xn={x1,& mldr;,xn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n=\{x_1,\ldots ,x_n\}$$\end{document} of variables, in which the identity (xy)(zt)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(xy)(zt)=0$$\end{document} is being satisfied. We define the action of the alternating group An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} on Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document} as follows. pi f(x1,& mldr;,xn)=f(x pi(1),& mldr;,x pi(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi f(x_1,\ldots ,x_n)=f(x_{\pi (1)},\ldots ,x_{\pi (n)})$$\end{document}, where pi is an element of An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \in A_n$$\end{document} and f is an element of Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in M_n$$\end{document}. The set MnAn={f is an element of Mn divided by pi f=f,for all pi is an element of An}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n<^>{A_n}=\{f\in M_n\mid \pi f=f\ , \forall \pi \in A_n\}$$\end{document} is a subalgebra of Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document} called the algebra of invariants of the group An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document}. In the first part of this study, we describe the elements of the algebra MnAn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n<^>{A_n}$$\end{document}. We also give the description of the algebras M2C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2<^>{C_2}$$\end{document}, M2C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2<^>{C_3}$$\end{document}, M2C2xC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2<^>{C_2\times C_2}$$\end{document}, and M2C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2<^>{C_4}$$\end{document} of invariants of the groups C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2$$\end{document}, C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_3$$\end{document}, C2xC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2\times C_2$$\end{document}, and C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document} of order up to 4, respectively, as a subgroups of the general linear group GL2(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GL}_2(K)$$\end{document}.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bicommutative algebras
    Dzhumadil'daev, AS
    Tulenbaev, KM
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1196 - 1197
  • [2] Palindromes in the free metabelian Lie algebras
    Findik, Sehmus
    Oguslu, Nazar Sahin
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (05) : 885 - 891
  • [3] Automorphisms of finitely generated relatively free bicommutative algebras
    Shestakov, Ivan
    Zhang, Zerui
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [4] Automorphisms of free metabelian Lie algebras
    Kofinas, C. E.
    Papistas, A. I.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (04) : 751 - 762
  • [5] On algebras embeddable into bicommutative algebras
    Ismailov, N. A.
    Mashurov, F. A.
    Sartayev, B. K.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (11) : 4778 - 4785
  • [6] Automorphisms of free metabelian Leibniz algebras
    Tas Adiyaman, Tuba
    Ozkurt, Zeynep
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4348 - 4359
  • [7] Wild automorphisms of free metabelian algebras
    Liu, Dayan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (01) : 30 - 36
  • [8] Test Sets in Free Metabelian Lie Algebras
    I. V. Chirkov
    M. A. Shevelin
    Siberian Mathematical Journal, 2002, 43 : 1135 - 1140
  • [9] Symmetric Polynomials in the Free Metabelian Lie Algebras
    Vesselin Drensky
    Şehmus Fındık
    Nazar Şahn Öüşlü
    Mediterranean Journal of Mathematics, 2020, 17
  • [10] Symmetric polynomials in the free metabelian Poisson algebras
    Dushimirimana, Andre
    Findik, Sehmus
    Oguslu, Nazar Sahin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (02)