On the number of limit cycles for a perturbed cubic reversible Hamiltonian system

被引:0
|
作者
Yang, Jihua [1 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
ISOCHRONOUS CENTERS; PIECEWISE-SMOOTH; BIFURCATION; INTEGRALS; PLANAR;
D O I
10.1063/5.0211447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the limit cycle problem of a cubic reversible Hamiltonian system under perturbation of polynomials of degree n with a switching line x = 0. The upper and lower bounds of the number of limit cycles are obtained using the first order Melnikov function and its expansion. The method for calculating the Melnikov function relies upon some iterative formulas, which differs from other approaches.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bifurcation of limit cycles in a cubic Hamiltonian system with perturbed terms
    Hong, Xiao-Chun
    Qin, Qing-Hua
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 12 - 16
  • [2] The number of limit cycles of cubic Hamiltonian system with perturbation
    Wu, Cheng-qiang
    Xia, Yonghui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 943 - 949
  • [3] ON THE NUMBER OF LIMIT CYCLES OF A CUBIC NEAR-HAMILTONIAN SYSTEM
    Yang, Junmin
    Han, Maoan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (03) : 827 - 840
  • [4] Bounding the number of limit cycles for perturbed piecewise linear Hamiltonian system
    Sui, Shiyou
    Xu, Weijiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
  • [5] Fourteen limit cycles in a cubic Hamiltonian system with higher-order perturbed terms
    Hong, XC
    Liu, ZR
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, : 1211 - 1215
  • [6] Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term
    Tang, MY
    Hong, XC
    CHAOS SOLITONS & FRACTALS, 2002, 14 (09) : 1361 - 1369
  • [7] Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system
    Llibre, Jaume
    Wu, Hao
    Yu, Jiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 419 - 432
  • [8] On the number of limit cycles of a cubic polynomials Hamiltonian system under quintic perturbation
    Zhou, Honpian
    Xu, Wei
    Li, Shuang
    Zhang, Ying
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 490 - 499
  • [9] On the number of limit cycles for some perturbed Hamiltonian polynomial systems
    Llibre, J
    Zhang, X
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2001, 8 (02): : 161 - 181
  • [10] The same distribution of limit cycles in five perturbed cubic Hamiltonian systems
    Liu, ZR
    Yang, ZY
    Jiang, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 243 - 249