A state of health estimation method for lithium-ion batteries based on initial charging segment and Gated Recurrent Unit neural network
被引:0
|
作者:
Xie, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Xie, Yu
[1
]
Luo, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Luo, Kai
[1
]
Zheng, Lihan
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Zheng, Lihan
[1
]
Zheng, Huiru
论文数: 0引用数: 0
h-index: 0
机构:
Ulster Univ, Sch Comp, Belfast BT15 1ED, North IrelandGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Zheng, Huiru
[2
]
Santos, Jose
论文数: 0引用数: 0
h-index: 0
机构:
Ulster Univ, Sch Comp, Belfast BT15 1ED, North IrelandGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Santos, Jose
[2
]
Alodhayb, Abdullah N.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi ArabiaGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Alodhayb, Abdullah N.
[3
]
Chen, Ping
论文数: 0引用数: 0
h-index: 0
机构:
BST Power Shenzhen Ltd, Shenzhen 518000, Peoples R China
Hengyang BST Power Ltd, Hengyang 421000, Peoples R ChinaGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Chen, Ping
[4
,5
]
Shi, Zhicong
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
Shi, Zhicong
[1
]
机构:
[1] Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Ulster Univ, Sch Comp, Belfast BT15 1ED, North Ireland
[3] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[4] BST Power Shenzhen Ltd, Shenzhen 518000, Peoples R China
[5] Hengyang BST Power Ltd, Hengyang 421000, Peoples R China
Lithium-ion batteries;
State-of-health estimation;
Deep learning;
Gated Recurrent Unit;
D O I:
10.1016/j.jpowsour.2025.236607
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
With the recent shortage of fossil energy and the escalating severity of environmental issues, electrochemical energy storage has emerged as a developing field. The widely used lithium-ion battery (LIB) is renowned for its exceptional performance. However, its safety concerns have garnered increasing attention. Accurate prediction of the state of health (SOH) of LIBs is crucial in mitigating safety accidents. In this study, the SOH of LIBs is predicted by selecting the initial charging segment data as features of a deep learning NN processed using dQ/dV. The processing results provide insights into the phase transformation process and aging information of both anode and cathode materials, which exhibit strong correlations with the aging behaviour of LIBs. Gated Recurring Unit (GRU) are then used to estimate SOH of LIBs. After applying dQ/dV processing to the data, the determination coefficients R2 for complete charging segments in three datasets increase from 0.79, 0.47, and 0.83 to 0.96, 0.97, and 0.99, respectively. By replacing Long Short-Term Memory (LSTM) with GRU, R2 values for the first 2 min of dataset 1 and dataset 2 improve from 0.32 to 0.37 to 0.93 and 0.80, which means that the use of GRU can substantially improve the prediction accuracy even though the data segment coverage time is short. This approach not only improves the estimation accuracy, but makes the entire work more interpretable and possible for application.
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Chen, Zheng
Peng, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Peng, Yue
Shen, Jiangwei
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Shen, Jiangwei
Zhang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Zhang, Qiang
Liu, Yonggang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
Chongqing Univ, Sch Mech & Vehicle Engn, Chongqing 400044, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Liu, Yonggang
Zhang, Yuanjian
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Zhang, Yuanjian
Xia, Xuelei
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Xia, Xuelei
Liu, Yu
论文数: 0引用数: 0
h-index: 0
机构:
China Automot Technol & Res Ctr Co Ltd, Tianjin 300300, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Chen, Zheng
Peng, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Peng, Yue
Shen, Jiangwei
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Shen, Jiangwei
Zhang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Zhang, Qiang
Liu, Yonggang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Mech & Vehicle Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Liu, Yonggang
Zhang, Yuanjian
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Zhang, Yuanjian
Xia, Xuelei
论文数: 0引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
Xia, Xuelei
Liu, Yu
论文数: 0引用数: 0
h-index: 0
机构:
China Automot Technol & Res Ctr Co Ltd, Tianjin 300300, Peoples R ChinaKunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
机构:
Center of Experimental Teaching, Guangdong University of Finance, GuangzhouCenter of Experimental Teaching, Guangdong University of Finance, Guangzhou
Zhang S.
Wu C.
论文数: 0引用数: 0
h-index: 0
机构:
School of Internet Finance and Information Engineering, Guangdong University of Finance, GuangzhouCenter of Experimental Teaching, Guangdong University of Finance, Guangzhou
Wu C.
Xiong W.
论文数: 0引用数: 0
h-index: 0
机构:
Center of Experimental Teaching, Guangdong University of Finance, GuangzhouCenter of Experimental Teaching, Guangdong University of Finance, Guangzhou
Xiong W.
Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering,
2021,
50
(02):