Exploring fractional Advection-Dispersion equations with computational methods: Caputo operator and Mohand techniques

被引:0
|
作者
Alshehry, Azzh Saad [1 ]
Yasmin, Humaira [2 ,3 ]
Mahnashi, Ali M. [4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] King Faisal Univ, Dept Basic Sci, Gen Adm Preparatory Year, POB 400, Al Hasa 31982, Saudi Arabia
[3] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[4] Jazan Univ, Fac Sci, Dept Math, POB 2097, Jazan 45142, Saudi Arabia
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
Advection-Dispersion equations (ADE); Mohand transform iterative method (MTIM); Mohand residual power series method (MRPSM); fractional order differential equation; Caputo operator; ORDER; TIME;
D O I
10.3934/math.2025012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presented a comprehensive analysis of nonlinear fractional systems governed by the advection-dispersion equations (ADE), utilizing the Mohand transform iterative method (MTIM) and the Mohand residual power series method (MRPSM). By incorporating the Caputo fractional derivative, we enhanced the modeling capability for fractional-order differential equations, accounting for nonlocal effects and memory in the systems dynamics. We demonstrated that both MTIM and validated against exact results. The steady-state solutions, complemented by graphical representations, highlighted the behavior of the system for varying fractional orders and showcased the flexibility and robustness of the methods. These findings contributed significantly to the field of computational physics, offering powerful tools for tackling complex fractional-order systems and advancing research in related fields.
引用
收藏
页码:234 / 269
页数:36
相关论文
共 50 条
  • [1] On generalized fractional flux advection-dispersion equation and Caputo derivative
    Golbabai, A.
    Sayevand, K.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 425 - 430
  • [2] New results on fractional advection-dispersion equations
    Qiao, Yan
    Chen, Fangqi
    An, Yukun
    Lu, Tao
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [3] Multiscaling fractional advection-dispersion equations and their solutions
    Schumer, R
    Benson, DA
    Meerschaert, MM
    Baeumer, B
    WATER RESOURCES RESEARCH, 2003, 39 (01)
  • [4] Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Mahnashi, Ali M.
    AIMS MATHEMATICS, 2024, 9 (11): : 32157 - 32181
  • [5] Fractional derivatives in advection-dispersion equations: A comparative study
    Pandey, Amit Kumar
    JOURNAL OF HYDROLOGY, 2025, 657
  • [6] Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations
    Zhao, Jingjun
    Zhao, Wenjiao
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [7] Fractional advection-dispersion equations for modeling transport at the Earth surface
    Schumer, Rina
    Meerschaert, Mark M.
    Baeumer, Boris
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
  • [8] Existence of nontrivial solutions for a system of fractional advection-dispersion equations
    Ma, Dexiang
    Liu, Lishan
    Wu, Yonghong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1041 - 1057
  • [9] Finite difference approximations for fractional advection-dispersion flow equations
    Meerschaert, MM
    Tadjeran, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) : 65 - 77
  • [10] Multidimensional fractional advection-dispersion equations and related stochastic processes
    D'Ovidio, Mirko
    Garra, Roberto
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19