Investigating the Role of TiO2 and MgTiO3 Supports in ZnO-Catalyzed Photocatalytic CO2 Reduction

被引:0
|
作者
Ramya, G. [1 ]
Aniskumar, M. [2 ]
Saravanan, V. [3 ]
Sathya, R. [4 ]
机构
[1] Rajalakshmi Engn Coll, Dept Mech Engn, Thandalam 602105, Tamil Nadu, India
[2] VSB Engn Coll, Dept Biotechnol, Karur 639111, Tamil Nadu, India
[3] Indra Ganesan Coll Engn, Dept Phys, Trichy 620012, Tamil Nadu, India
[4] K Ramakrishnan Coll Technol Autonomous, Dept Comp Sci Engn, Tiruchirappalli 621112, India
关键词
CO2; reduction; TiO2; MgTiO3; ZnO; Photocatalytic Mechanism; MECHANICAL-PROPERTIES;
D O I
10.14447/jnmes.v27i3.a10
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
It is widely known that ZnO's photocatalytic activity on CO2 reduction with water is enhanced when it is supported. We investigated how the support affected the photocatalytic reduction of CO2 using ZnO supported by TiO2 and MgTiO3 catalysts. As a function of both the loading concentration and the support's specific surface area, the ZnO showed a variety of crystalline phases on the supports. Increased catalytic activity led to greater dispersion of ZnO particles and an increase in specific surface area. The rates of production for H-2 and CO, the main byproducts of CO2 reduction, exhibited distinct crystalline phase dependence. Specifically, H-2 production was mostly dependent on alpha-ZnO, but the rate of CO production grew with an increasing gamma-ZnO/alpha-ZnO ratio and reached its maximum at a certain gamma-ZnO/alpha-ZnO ratio. The two primary findings are as follows: (1) the photocatalytic activity is greatly improved when ZnO particles are loaded as rods on the support in quantities of a few tens of nanometers, and (2) a new mechanism is discovered whereby the reduction of CO2 adsorbed on gamma-ZnO or the interface between the two phases is dominated by water splitting on alpha-ZnO.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 50 条
  • [1] Pivotal Role of Holes in Photocatalytic CO2 Reduction on TiO2
    Moustakas, Nikolaos G.
    Lorenz, Felix
    Dilla, Martin
    Peppel, Tim
    Strunk, Jennifer
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (68) : 17213 - 17219
  • [2] Photocatalytic Reduction of CO2 on TiO2 Catalysts
    Wang Huixiang
    Jiang Dong
    Wu Dong
    Li Debao
    Sun Yuhan
    PROGRESS IN CHEMISTRY, 2012, 24 (11) : 2116 - 2123
  • [3] Photocatalytic Reduction of CO2 by TiO2 Nanotubes
    Chang, H-H
    Wei, L-W
    Huang, H-L
    Chang, H-Y
    Wang, H. Paul
    NANO, 2022, 17 (04)
  • [4] Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst
    Quang Duc Truong
    Liu, Jen-Yu
    Chung, Cheng-Chi
    Ling, Yong-Chien
    CATALYSIS COMMUNICATIONS, 2012, 19 : 85 - 89
  • [5] Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2
    Nikokavoura, Aspasia
    Trapalis, Christos
    APPLIED SURFACE SCIENCE, 2017, 391 : 149 - 174
  • [6] Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors
    Habisreutinger, Severin N.
    Schmidt-Mende, Lukas
    Stolarczyk, Jacek K.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) : 7372 - 7408
  • [7] In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity
    Liu, Zhizhong
    Xu, Ping
    Song, Hao
    Xu, Jiangwen
    Fu, Jijiang
    Gao, Biao
    Zhang, Xuming
    Chu, Paul K.
    SURFACE & COATINGS TECHNOLOGY, 2019, 365 : 222 - 226
  • [8] Effect of silver doping on the TiO2 for photocatalytic reduction of CO2
    Koci, K.
    Mateju, K.
    Obalova, L.
    Krejcikova, S.
    Lacny, Z.
    Placha, D.
    Capek, L.
    Hospodkova, A.
    Solcova, O.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 96 (3-4) : 239 - 244
  • [9] Photocatalytic reduction of CO2 over TiO2 based catalysts
    Kamila Kočí
    Lucie Obalová
    Zdeněk Lacný
    Chemical Papers, 2008, 62 : 1 - 9
  • [10] Photocatalytic CO2 reduction over mesoporous TiO2 photocatalysts
    Reli, Martin
    Nadrah, Peter
    Edelmannova, Miroslava Filip
    Ricka, Rudolf
    Skapin, Andrijana Sever
    Stangar, Urska Lavrencic
    Koci, Kamila
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 169