Towards Few-Shot Self-explaining Graph Neural Networks

被引:0
|
作者
Peng, Jingyu [1 ]
Liu, Qi [1 ,2 ]
Yue, Linan [1 ]
Zhang, Zaixi [1 ]
Zhang, Kai [1 ]
Sha, Yunhao [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Cognit Intelligence, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
关键词
Explainability; Graph Neural Network; Meta Learning;
D O I
10.1007/978-3-031-70365-2_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advancements in Graph Neural Networks (GNNs) have spurred an upsurge of research dedicated to enhancing the explainability of GNNs, particularly in critical domains such as medicine. A promising approach is the self-explaining method, which outputs explanations along with predictions. However, existing self-explaining models require a large amount of training data, rendering them unavailable in few-shot scenarios. To address this challenge, in this paper, we propose a Meta-learned Self-Explaining GNN (MSE-GNN), a novel framework that generates explanations to support predictions in few-shot settings. MSE-GNN adopts a two-stage self-explaining structure, consisting of an explainer and a predictor. Specifically, the explainer first imitates the attention mechanism of humans to select the explanation subgraph, whereby attention is naturally paid to regions containing important characteristics. Subsequently, the predictor mimics the decision-making process, which makes predictions based on the generated explanation. Moreover, with a novel meta-training process and a designed mechanism that exploits task information, MSE-GNN can achieve remarkable performance on new few-shot tasks. Extensive experimental results on four datasets demonstrate that MSE-GNN can achieve superior performance on prediction tasks while generating high-quality explanations compared with existing methods. The code is publicly available at https://github.com/jypeng28/MSE-GNN.
引用
收藏
页码:109 / 126
页数:18
相关论文
共 50 条
  • [1] ProtGNN: Towards Self-Explaining Graph Neural Networks
    Zhang, Zaixi
    Liu, Qi
    Wang, Hao
    Lu, Chengqiang
    Lee, Cheekong
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9127 - 9135
  • [2] Hierarchical Graph Neural Networks for Few-Shot Learning
    Chen, Cen
    Li, Kenli
    Wei, Wei
    Zhou, Joey Tianyi
    Zeng, Zeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 240 - 252
  • [3] Hybrid Graph Neural Networks for Few-Shot Learning
    Yu, Tianyuan
    He, Sen
    Song, Yi-Zhe
    Xiang, Tao
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3179 - 3187
  • [4] Towards Robust Interpretability with Self-Explaining Neural Networks
    Alvarez-Melis, David
    Jaakkola, Tommi S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Federated Collaborative Graph Neural Networks for Few-shot Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Wen, Chao
    Qin, A. K.
    Gong, Maoguo
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (06) : 1077 - 1091
  • [6] Few-Shot Audio Classification with Attentional Graph Neural Networks
    Zhang, Shilei
    Qin, Yong
    Sun, Kewei
    Lin, Yonghua
    INTERSPEECH 2019, 2019, : 3649 - 3653
  • [7] Few-shot palmprint recognition via graph neural networks
    Shao, Huikai
    Zhong, Dexing
    ELECTRONICS LETTERS, 2019, 55 (16) : 890 - 891
  • [8] Graph Neural Networks With Triple Attention for Few-Shot Learning
    Cheng, Hao
    Zhou, Joey Tianyi
    Tay, Wee Peng
    Wen, Bihan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8225 - 8239
  • [9] Explaining Siamese networks in few-shot learning
    Fedele, Andrea
    Guidotti, Riccardo
    Pedreschi, Dino
    MACHINE LEARNING, 2024, 113 (10) : 7723 - 7760
  • [10] Cascade Graph Neural Networks for Few-Shot Learning on Point Clouds
    Li, Yangfan
    Chen, Cen
    Yan, Weiquan
    Cheng, Zhongyao
    Tan, Hui Li
    Zhang, Wenjie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8788 - 8798