Operating Conversational Large Language Models (LLMs)in the Presenceof Errors

被引:0
|
作者
Gao, Zhen [1 ]
Deng, Jie [2 ]
Reviriego, Pedro [3 ]
Liu, Shanshan [4 ]
Pozo, Alejando [3 ]
Lombardi, Fabrizio [5 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Future Technol, Tianjin 300072, Peoples R China
[3] Univ Politecn Madrid, ETSI Telecomunicac, Madrid 28040, Spain
[4] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[5] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
关键词
Quantization (signal); Benchmark testing; Transformers; Codes; Translation; Memory management; Logic gates; Integrated circuit modeling; Hardware; Computational modeling; Dependability; generative artificial intelligence; large language models; errors;
D O I
10.1109/MNANO.2024.3513112
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conversational Large Language Models have taken the center stage of the artificial intelligence landscape. As they are pervasive, there is a need to evaluate their dependability, i.e., performance when errors appear due to the underlying hardware implementation. In this paper we consider the evaluation of the dependability of a widely used conversational LLM: Mistral-7B. Error injection is conducted, and the Multitask Language Understanding (MMLU) benchmark is used to evaluate the impact on performance. The drop in the percentage of correct answers due to errors is analyzed and the results provide interesting insights: Mistral-7B has a large intrinsic tolerance to errors even at high bit error rates. This opens the door to the use of nanotechnologies that trade-off errors for energy dissipation and complexity to further improve the LLM implementation. Also, the error tolerance is larger for 8-bit quantization than for 4-bit quantization, so suggesting that there will be also a trade-off between quantization optimizations to reduce memory requirements and error tolerance. In addition, we also show the different impact of errors on different types of weights, which is valuable information for selective protection designs.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [1] Lower Energy Large Language Models (LLMs)
    Lin, Hsiao-Ying
    Voas, Jeffrey
    COMPUTER, 2023, 56 (10) : 14 - 16
  • [2] Towards Safer Large Language Models (LLMs)
    Lawrence, Carolin
    Bifulco, Roberto
    Gashteovski, Kiril
    Hung, Chia-Chien
    Ben Rim, Wiem
    Shaker, Ammar
    Oyamada, Masafumi
    Sadamasa, Kunihiko
    Enomoto, Masafumi
    Takeoka, Kunihiro
    NEC Technical Journal, 2024, 17 (02): : 64 - 74
  • [3] LARGE LANGUAGE MODELS (LLMS) AND CHATGPT FOR BIOMEDICINE
    Arighi, Cecilia
    Brenner, Steven
    Lu, Zhiyong
    BIOCOMPUTING 2024, PSB 2024, 2024, : 641 - 644
  • [4] Large language models (LLMs) and the institutionalization of misinformation
    Garry, Maryanne
    Chan, Way Ming
    Foster, Jeffrey
    Henkel, Linda A.
    TRENDS IN COGNITIVE SCIENCES, 2024, 28 (12) : 1078 - 1088
  • [5] linguagem grande (LLMs) Linguistic ambiguity analysis in large language models (LLMs)
    Moraes, Lavinia de Carvalho
    Silverio, Irene Cristina
    Marques, Rafael Alexandre Sousa
    Anaia, Bianca de Castro
    de Paula, Dandara Freitas
    Faria, Maria Carolina Schincariol de
    Cleveston, Iury
    Correia, Alana de Santana
    Freitag, Raquel Meister Ko
    TEXTO LIVRE-LINGUAGEM E TECNOLOGIA, 2025, 18
  • [6] Recommender Systems in the Era of Large Language Models (LLMs)
    Zhao, Zihuai
    Fan, Wenqi
    Li, Jiatong
    Liu, Yunqing
    Mei, Xiaowei
    Wang, Yiqi
    Wen, Zhen
    Wang, Fei
    Zhao, Xiangyu
    Tang, Jiliang
    Li, Qing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6889 - 6907
  • [7] Large language models (LLMs) as agents for augmented democracy
    Gudino, Jairo F.
    Grandi, Umberto
    Hidalgo, Cesar
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2285):
  • [8] Are Large Language Models (LLMs) Ready for Agricultural Applications?
    Shende, Ketan
    Resource: Engineering and Technology for Sustainable World, 2025, 32 (01): : 28 - 30
  • [9] TOWARDS A CONVERSATIONAL ETHICS OF LARGE LANGUAGE MODELS
    Kempt, Hendrik
    Lavie, Alon
    Nagel, Saskia K.
    AMERICAN PHILOSOPHICAL QUARTERLY, 2024, 61 (04) : 339 - 354
  • [10] Enhancing Conversational Search with Large Language Models
    Rocchietti, Guido
    Muntean, Cristina Ioana
    Nardini, Franco Maria
    ERCIM NEWS, 2024, (136): : 33 - 34