Distribution and congruences of ℓ-regular bipartitions

被引:0
|
作者
Meher, Nabin Kumar [1 ]
机构
[1] Indian Inst Informat Technol Raichur, Govt Engn Coll Campus, Dept Math, Raichur 584135, Karnataka, India
关键词
& ell; -regular bipartitions; Eta-quotients; Congruence; Modular forms; Arithmetic density; Hecke-eigen form; Newman identity; ARITHMETIC PROPERTIES;
D O I
10.1007/s12215-025-01188-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-& ell;(n) denote the number of & ell;-regular bipartitions of n. In 2013, Lin [6] proved a density result for B-4(n). He showed that for any positive integer k, B-4(n) is almost always divisible by 2(k). In this article, we significantly extend his result. We prove that B-2 alpha(m)(n) and B-3 alpha(m)(n) are almost always divisible by arbitrary power of 2 and 3 respectively. Further, we obtain an infinite family of congruences and internal congruences for B-2(n) and B-4(n) by using Hecke eigenform theory. Next, by using a result of Ono and Taguchi [14] on nilpotency of Hecke operator, we prove that there exists an infinite family of congruences modulo arbitrary power of 2 satisfied by B-2 alpha(n).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An infinite family of congruences modulo for -regular bipartitions
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2016, 39 (01): : 169 - 178
  • [2] CONGRUENCES FOR l-REGULAR PARTITIONS AND BIPARTITIONS
    Cui, Su-Ping
    Gu, Nancy S. S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (02) : 513 - 526
  • [3] Congruences for (3,11)-regular bipartitions modulo 11
    Donna Q. J. Dou
    The Ramanujan Journal, 2016, 40 : 535 - 540
  • [4] Congruences for (3,11)-regular bipartitions modulo 11
    Dou, Donna Q. J.
    RAMANUJAN JOURNAL, 2016, 40 (03): : 535 - 540
  • [5] Ramanujan-type congruences modulo m for (l, m)-regular bipartitions
    Kathiravan, T.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 375 - 391
  • [6] Ramanujan-type congruences modulo m for (l, m)-regular bipartitions
    T. Kathiravan
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 375 - 391
  • [7] Congruences for bipartitions with odd parts distinct
    William Y. C. Chen
    Bernard L. S. Lin
    The Ramanujan Journal, 2011, 25 : 277 - 293
  • [8] Congruences for bipartitions with odd parts distinct
    Chen, William Y. C.
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2011, 25 (02): : 277 - 293
  • [9] Ramanujan-Type Congruences for (l, m)-Regular Bipartitions Modulo 2, 5 and 7
    Palani, Murugan
    Fathima, Syeda Noor
    VIETNAM JOURNAL OF MATHEMATICS, 2024,
  • [10] Congruences modulo 9 for bipartitions with designated summands
    Hao, Robert Xiaojian
    Shen, Erin Yiying
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2325 - 2335