Microstructure, mechanical properties, and corrosion resistance of L21 phase-strengthened laser cladding CrFeNiTixAl1-x high-entropy alloy coatings

被引:2
|
作者
Xu, Yiku [1 ]
Yan, Kai [1 ]
Wang, Yue [1 ]
Yang, Jing [1 ]
Hua, Rimin [1 ]
Zhao, Qinyang [1 ]
Chen, Yongnan [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
关键词
High entropy alloy coatings; L21 phase strengthening; Microstructure; Mechanical property; Corrosion resistance; OXIDATION BEHAVIOR; WEAR; YTTRIUM; AL; TI;
D O I
10.1016/j.jallcom.2024.177162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, CrFeNiTixAl1-x (x=0.3, 0.7 in mole ratio) high-entropy alloy coatings (referred to as Ti0.3Al0.7, Ti0.7Al0.3 alloy coating, respectively) were prepared on AlSI1045 steel using the laser cladding (LC) method by adjusting the Al and Ti element contents. The phase constitutions, microstructures, mechanical properties, and corrosion resistance of the prepared coatings were comprehensively investigated and compared. Both Ti0.3Al0.7 and Ti0.7Al0.3 coatings exhibited rich Fe-Cr disordered BCC phase (A2) and NiAl ordered BCC phase (B2). The L21 phase in the Ti0.7Al0.3 coating accounted for as much as 47.7% when the Ti content was 0.7. The elevated Ti content significantly refined the internal structure of the coating, reducing the average grain size from 7.495 mu m to 2.281 mu m. With the combined effect of grain refinement and obstruction of dislocation motion by large angle grain boundaries, the microhardness of the Ti0.7Al0.3 alloy coatings increased from 685.12 HV0.2 to 867.20 HV0.2 compared to Ti0.3Al0.7. The precipitation strengthening effect of the noncoherent hard L21 phase, along with the protective role of the TiO2 oxide film, resulted in the lowest friction coefficient of 0.171 for Ti0.7Al0.3. Ti0.7Al0.3 exhibits the dominant wear mechanisms of abrasive and oxidative wear. Meanwhile, these coatings also exhibited excellent resistance to Cl- corrosion, with corrosion potentials shifted to -0.52 V and -0.46 V for Ti0.3Al0.7 and Ti0.7Al0.3, and corrosion current densities decreased to 1.26 x 10-6 A/cm2 and 4.35 x 10- 7A/cm2, respectively. These findings suggest that the replacement of equimolar Al with equimolar Ti in the CrFeNiTiAl high-entropy alloy compositions is a meaningful phenomenon that offers new perspectives for the design of novel high-performance HEAs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microstructure, mechanical properties, and corrosion resistance of SiC reinforced AlxCoCrFeNiTi1-x high-entropy alloy coatings prepared by laser cladding
    Xu, Yiku
    Wang, Geng
    Song, Qi
    Lu, Xinyu
    Li, Zhiyuan
    Zhao, Qinyang
    Chen, Yongnan
    SURFACE & COATINGS TECHNOLOGY, 2022, 437
  • [2] Microstructure, mechanical, and corrosion resistance properties of Al0.8CrFeCoNiCux high-entropy alloy coatings on aluminum by laser cladding
    Li, Yanzhou
    Shi, Yan
    Olugbade, Emmanuel
    MATERIALS RESEARCH EXPRESS, 2020, 7 (02)
  • [3] Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding
    Zhao X.
    Cui H.
    Jiang D.
    Song X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6311 - 6323
  • [4] Microstructure and Corrosion Resistance of AlCoCrFeNiSix High-Entropy Alloy Coating by Laser Cladding
    Liu Hao
    Gao Qiang
    Hao Jingbin
    Zhang Guozhong
    Hu Yuan
    Yang Haifeng
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (06) : 2199 - 2208
  • [5] Microstructure, mechanical properties and corrosion resistance of FeCuNiCrAl high-entropy alloy-reinforced 316L stainless steel composite coatings by laser cladding
    Gao, Senao
    Wang, Tongxin
    Mao, Huakai
    Li, Mengzhao
    Liu, Nian
    Huang, Long
    Cui, Chang
    Zhang, Guodong
    SURFACES AND INTERFACES, 2025, 62
  • [6] Corrosion of Laser Cladding High-Entropy Alloy Coatings: A Review
    Liu, Yusheng
    Xiang, Dingding
    Wang, Kaiming
    Yu, Tianbiao
    COATINGS, 2022, 12 (11)
  • [7] Microstructure Evolution and Properties of Laser Cladding CoCrFeNiTiAlx High-Entropy Alloy Coatings
    Xu, Yiku
    Li, Zhiyuan
    Liu, Jianru
    Chen, Yongnan
    Zhang, Fengying
    Wu, Lei
    Hao, Jianmin
    Liu, Lin
    COATINGS, 2020, 10 (04)
  • [8] Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding
    Mengxian Li
    Zhiping Sun
    Zhaomin Xu
    Zhiming Wang
    Journal of Harbin Institute of Technology(New Series), 2024, 31 (02) : 50 - 61
  • [9] Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings
    Zhang, Hongling
    Li, Wenjuan
    Xu, Huanhuan
    Chen, Liang
    Zeng, Junshan
    Ding, Zhibing
    Guo, Wenmin
    Liu, Bin
    COATINGS, 2022, 12 (05)
  • [10] Effects of Line Energy on Microstructure and Mechanical Properties of CoCrFeNiBSi High-Entropy Alloy Laser Cladding Coatings
    Fengyuan Shu
    Bin Wang
    Hongyun Zhao
    Caiwang Tan
    Jialiang Zhou
    Jian Zhang
    Journal of Thermal Spray Technology, 2020, 29 : 789 - 797