Solving the problem about the second largest normalized Laplacian eigenvalue

被引:0
|
作者
Zhao, Xinghui [1 ]
You, Lihua [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
The second largest; Normalized Laplacian eigenvalue; The third smallest;
D O I
10.1016/j.dam.2025.01.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph of order n with normalized Laplacian eigenvalue rho 1 >= rho 2 >= <middle dot> <middle dot> <middle dot> >= rho n = 0. In Sun and Das (2019), the authors obtained the first three smallest values on rho 2 of connected graphs and proposed an open problem on the third smallest values of rho 2. In this paper, we solve the problem completely, characterize all connected graphs with order n, which satisfy rho 2 = n-1 n-2 . (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:8 / 21
页数:14
相关论文
共 50 条
  • [1] On the second largest normalized Laplacian eigenvalue of graphs
    Sun, Shaowei
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 531 - 541
  • [2] On the second largest Laplacian eigenvalue of trees
    Guo, JM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 : 251 - 261
  • [3] On the second largest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1215 - 1222
  • [4] A NEW UPPER BOUND ON THE LARGEST NORMALIZED LAPLACIAN EIGENVALUE
    Rojo, Oscar
    Soto, Ricardo L.
    OPERATORS AND MATRICES, 2013, 7 (02): : 323 - 332
  • [5] Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian
    Jost, Juergen
    Mulas, Raffaella
    Muench, Florentin
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 371 - 381
  • [6] Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian
    Jürgen Jost
    Raffaella Mulas
    Florentin Münch
    Communications in Mathematics and Statistics, 2022, 10 : 371 - 381
  • [7] Graphs with small second largest Laplacian eigenvalue
    Wu, Yarong
    Yu, Guanglong
    Shu, Jinlong
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 190 - 197
  • [8] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Tian, Xiao-guo
    Wang, Li-gong
    Lu, You
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 628 - 644
  • [9] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo TIAN
    Li-gong WANG
    You LU
    ActaMathematicaeApplicataeSinica, 2021, 37 (03) : 628 - 644
  • [10] On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph
    Xiao-guo Tian
    Li-gong Wang
    You Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 628 - 644